(44.192.66.171) 您好!臺灣時間:2021/05/18 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王志河
研究生(外文):Chih-He Wang
論文名稱:改質菫青石微波誘導處理含氯有機物
論文名稱(外文):Modification of the cordierite by microwave-induced treatments chlorinated organic compounds
指導教授:周志儒周志儒引用關係
指導教授(外文):Chih-Ju Jou
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:71
中文關鍵詞:菫青石零價鐵微波誘導
外文關鍵詞:Zero Valence IronMicrowave InductionCordierite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以微波能量誘導溶液中的改質堇青石,使其快速氧化而加速氯苯的脫氯作用。在改質堇青石降解水中氯苯試驗方面,2g的改質堇青石可有效的降解污染物,在常溫的去除率為16%,其2g的改質堇青石去除率明顯高於1g的改質堇青石,較多的改質堇青石會提高較多的去除率;氯苯溶液反應溫度在40 ℃、50 ℃、60 ℃條件下,降解率提高至26%、38%、49%。反應溶液溫度的增加使得分子的動能增加,單位時間內碰撞的次數亦增加,使的去除率增加。在微波場下改質堇青石降解水中含氯有機物的試驗方面,以微波250W進行氯苯與四氯乙烯之降解,在相同重量的條件下(2g),氯苯與四氯乙烯的去除率分別為81%、88%。在微波功率250W進行改質堇青石重覆使用次數為第一次、第二次、第三次,去除率分別為84%、74%、71%。在微波功率150W、250W、350W的條件下,去除率分別為55%、84%、95%。較長的微波時間與微波功率的增加,亦提供了更多的微波能量讓改質堇青石吸收,證明了在微波能量能有效的誘導改質堇青石降解水中含氯有機物,其縮短處理時間與增加去除率。
In this research, modification of the cordierite in aqueous solution is induced by microwave energy which accelerates oxidation and the dechlorination rate. In the experiment which modification of the cordierite degrades chlorobenzene in water, 2g of modification of the cordierite can degrade contaminants, and the degradation rates in the normal atmospheric temperature are 16%. Obviously, 2g of modification of the cordierite has a higher removal rate than 1g, and thus the more the modification of the cordierite, the higher the removal rates. When the reaction temperature for chlorobenzene in aqueous solution is kept at 40℃, 50 ℃, and 60 ℃, the degradation rates increase to 26%, 38%, and 49%, respectively. The increase of reaction temperature in aqueous solution will enhance the molecular kinetic energy and the number of collision per unit time; thus, lead to a higher removal rate. In the experiment which modification of the cordierite degrades chlorinated organic compounds in water under a microwave field, chlorobenzene and perchloroethylene are degraded in 250 Watts. Under the same conditions, which the quantity is 2g, the removal rates of chlorobenzene and perchloroethylene are 81% and 88%, respectively. With 250 watts microwave power and the number of repetitions as once, twice, and three times, the removal rates for modification of the cordierite are 84%, 74% and 71, respectively. When the microwave power is as 150 watts, 250 watts, and 350 watts, the removal rates are 55%, 84% and 95%, respectively. Because of longer microwave functioning time and more microwave power, more microwave energy is absorbed by modification of the cordierite. Therefore, it is proved that microwave energy can effectively induce modification of the cordierite, and thus degrade chlorinated organic compounds in water. Furthermore, it decreases reaction time and increases removal rates.
目 錄
中文摘要I
英文摘要II
誌謝IV
目錄V
表目錄VIII
圖目錄IX
一、緒論1
1.1前言1
1.2研究動機2
1.3研究內容2
1.4研究目的3
二、文獻回顧4
2.1.含氯有機物4
2.1.1污染來源4
2.1.2氯苯物理及化學特性5
2.1.2.1氯苯對人體健康與環境危害的影響6
2.1.3四氯乙烯物理及化學特性7
2.1.3.1四氯乙烯對人體健康與環境危害的影8
2.2含氯有機物污染物各種處理技術9
2.2.1熱處理方法9
2.2.2生物分解法10
2.2.3高等氧化化學法10
2.2.4吸附法11
2.2.5可見光還原脫氯法11
2.2.6微波處理技術12
2.3零價鐵12
2.3.1零價鐵還原脫氯之基本原理12
2.4堇青石簡介15
2.4.1堇青石特性15
2.4.2堇青石的應用15
2.5觸媒16
2.5.1觸媒的種類16
2.5.2觸媒的形狀17
2.5.3觸媒的製備17
2.5.4擔體效應19
2.5.5觸媒在污染上的應用20
2.5.5.1車輛廢氣排放處理-觸媒轉化器20
2.5.5.2氮氧化物和硫氧化物的廢氣處理21
2.5.5.3有機揮發性氣體、臭氣的處理-觸媒焚化技術22
2.5.5.4其他-空氣清潔處理與毒性有機物質的處理23
2.6微波特性24
2.6.1微波理論24
2.6.2微波介質25
2.6.3微波處理技術的應用26
2.6.4影響微波加熱因子27
2.6.5微波加熱特性28
2.6.6微波與傳統加熱之差異29
三、研究材料與方法30
3.1研究架構30
3.2研究材料與設備30
3.2.1研究材料30
3.2.2研究設備33
3.2.3 GC/MS設定條件33
3.3研究方法34
3.3.1基礎試驗34
3.3.1.1改質堇青石降解氯苯之參數探討34
3.3.1.1.1不同添加量改質堇青石降解氯苯之影響試驗34
3.3.1.1.2比較不同溫度對改質堇青石降解氯苯之影響試驗34
3.3.2微波試驗34
3.3.2.1微波誘導改質堇青石降解氯苯條件之探討34
3.3.2.1.1比較不同微波反應時間之影響試驗34
3.3.2.1.2比較不同污染物對於改質堇青石降解之影響試驗35
3.3.2.1.3比較改質堇青石重覆使用之微波影響試驗35
3.3.3觸媒結構定35
3.3.3.1 BET比表面積分析儀35
3.3.3.2 掃描式電子顯微鏡35
3.3.4品質保證與品質管制36
四、結果與討論37
4.1觸媒結構分析37
4.1.1比表面積(BET)37
4.1.2掃描式電子顯微(SEM)38
4.2基礎試驗41
4.2.1不同添加量改質堇青石降解水中氯苯之影響41
4.2.2比較不同溫度對改質堇青石降解水中氯苯之影響43
4.3微波試驗45
4.3.1比較不同微波反應時間降解水中氯苯之影響45
4.3.2比較不同污染物對於改質堇青石降解水中氯苯之影響48
4.3.3比較微波重覆使用改質堇青石降解水中氯苯之影響49
4.4微波對於溶液溫度的影響51
4.5產物鑑定與反應機制推估51
4.6改質堇青石降解水中氯苯的技術應用可行性52
五、結論與建議53
5.1結論53
5.2建議54
六、參考文獻55
表 目 錄
表2-1含氯有機化合物4
表2-2氯苯基本物理及化學性表5
表2-3氯苯對人體健康之危害效應6
表2-4四氯乙烯基本物理及化學性表7
表2-5四氯乙烯對人體健康之危害效應8
表2-6一般常見堇青石組成與物理特性15
表4-1堇青石之表面性質38
表4-2微波對於溶液溫度的影響51
表4-3 常溫改質堇青石降解水中氯苯的參數與結果52
表4-4 微波誘導改質堇青石降解水中氯苯的參數與結果52
圖 目 錄
圖2-1第一種模式途徑:直接接觸應13
圖2-2第二種模式途徑:腐蝕反應14
圖2-3第三種模式途徑:觸媒氫化反應14
圖3-1研究架構31
圖3-2零價鐵塗覆堇青石試驗32
圖4-1以掃描式電子顯微鏡拍攝之表面結構(未微波堇青石)39
圖4-2以掃描式電子顯微鏡拍攝之表面結構(微波250W堇青石)39
圖4-3以掃描式電子顯微鏡拍攝之表面結構(未微波改質堇青石)40
圖4-4以掃描式電子顯微鏡拍攝之表面結構(微波250W改質堇青石)40
圖4-5比較不同添加量改質堇青石降解100 mg/L之氯苯42
圖4-6比較不同添加量改質堇青石K值之改變42
圖4-7比較常溫下2g空白堇青石與2g改質堇青石降解100 mg/L之氯苯43
圖4-8不同溫度對於改質堇青石降解氯苯之影響44
圖4-9不同溫度對於改質堇青石K值之變化44
圖4-10比較微波250W空白堇青石與改質堇青石降解100 mg/L之氯苯46
圖4-11微波150W改質堇青石降解100 mg/L之氯苯46
圖4-12微波350W改質堇青石降解100 mg/L之氯苯47
圖4-13不同微波功率對於改質堇青石降解氯苯之影響47
圖4-14不同微波功率對於改質堇青石K值之影響48
圖4-15微波250W改質堇青石降解氯苯與四氯乙烯之影響49
圖4-16比較微波250W重覆使用改質堇青石降解氯苯之影響50
圖4-17比較微波250W重覆使用改質堇青石K值之影響50
環境資料庫,行政院環保署,1996∼2001
涂浩洋,2002,有害廢棄物焚化爐中戴奧辛與前驅物之關係模式研究,國立中正大學,碩士論文
環保署毒災應變中心,2008
顏駿翔,2001,“添加Mn/γ-AlO3 於觸媒濕式氧化程序處理2,4二氯酚水溶液之研究”,國立中山大學環境工程研究所,碩士論文。
李昆展,2001,“以稻穀灰分初濕含浸製備擔體銅觸媒之研究”,國立中央大學化學工程研究所,碩士論文。
劉吉平、郝向平,2003,奈米科技與技術,世茂出版社。
王紳典,2003,有機化學,新文京出版社。
V. Janda, P. Vasek, J. Bizova, Z. Belohlav, Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron, Chemosphere 54 (2004) 917–925.
H. L. Lien, W. Zhang, Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al, Chemosphere 49 (2002) 371–378.
H. L. Lien, W. X. Zhang, Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe Bimetallic Particles, Journal of Environment Engineering 9 (2005) 4-10.
S. Yamazaki, H. Tsukamoto, K.e Araki, T. Tanimura, I. T. Tejedor, M. A. Anderson, Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO2 pellets, Applied Catalysis B: Environmental 33 (2001) 109–117.
H. Takashima, L. Ren, Y. Kanno, Catalytic decomposition of TCE under microwave, Catalysis Communications 5 (2004) 317–319.
J. Morales, R. Hutcheson, I. F. Cheng, Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles, Journal of Hazardous Materials B90 (2002) 97–108.
Y. Liu, F. Yang, P. Yue, G. Chen, Catalytic dechlorination of chlorophenols in water by palladium/iron, Water Research 35 (2001)1887–1890.
C. Cui, X. Quan, S. Chen, H. Zhao, Adsorption and electrocatalytic dechlorination of pentachlorophenol on palladium-loaded activated carbon fibers, Separation and Purification Technology 47 (2005) 73–79.
C. Tai, G. Jiang, Dechlorination and destruction of 2,4,6-trichlorophenol and pentachlorophenol using hydrogen peroxide as the oxidant catalyzed by molybdate ions under basic condition, Chemosphere 59 (2005) 321–326.
U. Patel, S. Suresh, Dechlorination of chlorophenols by magnesium–silver bimetallic system, Journal of Colloid and Interface Science 299 (2006) 249–259.
P. K. Andrew Hong, Yu Zeng, Degradation of pentachlorophenol by ozonation and biodegradability of intermediates, Water Research 36 (2002) 4243–4254.
N. Ruiz , S. Seal , D. Reinhart, Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation, Journal of Hazardous Materials B80 (2000) 107–117.
K.E. Haque, Volatile organic compounds cytotoxicity and expression of HSP72, HSP90 and GRP78 stress proteins in cultured human cell. Biochim Biophys. Acta. 1591 (2002) 147-155.
M. Mohseni, Gas phase trichloroethylene (TCE) photooxidation and byproduct formation: photolysis vs. titania/silica based photocatalysis, Chemosphere 59 (2005) 335–342.
T. Sakai, Y. Morita, C. Wakui, Biological monitoring of worker exposed to dichloromethane using head-space gas chromatography. Journal of Chromatography B. 778 (2002) 245-250.
J. C. S. Wu, Z. A. Lin, F. M. Tsai, J. W. Pan, Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catalysis Today 63 (2000) 419-426.
A. Zhihui, Y. Peng, L. Xiaohua, Degradation of 4-Chlorophenol by microwave irradiation enhanced advanced oxidation processes, Chemosphere 60 (2005) 824–827.
D. H. Han, S. Y. Cha, H. Y. Ya, Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study, Water Research 38 (2004) 2782–2790.
Y. C. Chiang, P. C. Chiang, C. P. Huang, Effects of pore structure and temperature on voc adsorption on activated carbon, Carbon 39 (2001) 523-534.
P. H. Taylor, D. Lenoir, Chloroaromatic formation in incineration processes, The Science of the Total Environment 269 (2000) 1-24.
A.Yamuna, R. Johnson, Y.R. Mahajan, M. Lalithambika, Kaolin-based cordierite for
pollution control, Journal of the European Ceramic Society 24 (2004) 65–73.
Z. Acimovic, L. Pavlovicb, L. Trumbulovic, L. Andricb, M. Stamatovic, Synthesis and characterization of the cordierite ceramics from nonstandard raw materials for application in foundry, Materials Letters 57 (2003) 2651– 2656.
H. G. El-Shobaky, Y. M. Fahmy, Nickel cuprate supported on cordierite as an activecatalyst for CO oxidation by O2, Applied Catalysis B: Environmental 63 (2006) 168–177.
N. Saffaj , S. A. Younssi, A. Albizane, A. Messouadi, M. Bouhria, M. Persin, M. Cretin, A. Larbot, Preparation and characterization of ultrafiltration membranes for toxic removal from wastewater, Desalination 168 (2004) 259-263.
S. Taruta, T. Hayashi, K. Kitajima, Preparation of machinable cordierite/mica composite by low-temperature sintering, Journal of the European Ceramic Society 24 (2004) 3149–3154.
H. S Ku, F. Siu, E. Siores, J.A.R Ball, A.S Blicblau, Applications of fixed and variable frequency microwave (VFM) facilities in polymeric materials prcessing and joining, Journal of Materials Processing Technology 113 (2001) 184-188.
M. S. Venkatesh1, G. S. V. Raghavan, An overview of microwave processing and dielectric properties of agri-food materials, Biosystems Engineering 88 (2004) 1-18.
D. A. Jones, T.P. Lelyveld, S.D. Mavrofidis, S.W. Kingman , N.J. Miles, Microwave heating applications in environmental engineering-a review, Resources, Conservation and Recycling 34 (2002) 75-90.
T. J. Appleton, R. I. Colder, S. W. Kingman, I. S. Lowndes, A. G. Read, Microwave technology for energy-efficient processing of waste, Applied Energy 81 (2005) 85-113.
C. J. Jou, Application of activated carbon in microwave radiation field to treat trichloroethylene, Carbon 36 (1998)1643-1648.
C. J. Jou, H. S. Tai, Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat BTX, Chemosphere 37 (1998) 685-698.
C. J. Jou, H. S. Tai, Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat phenol, Chemosphere 38 (1999) 2667-2680.
C. J. Jou, An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation. J. Environ. Manage. 78 (2006) 1-4.
P. M. Coss, C. Y. Cha, Microwave regeneration of activated carbon used for the removal of solvents from vented air, Journal of the Air and Waste Management Association. 50 (2000) 529-35.
D. E. Clark, D. C. Folz, J. K. West, Processing materials with microwave energy. Materials Science and Engineering A 287 (2000) 153–158.
S. Moriwaki, M. Machida, H. Tatsumoto, Y. Otsubo, M. Aikawa, T. Ogura. Dehydrochlorination of poly (vinyl chloride) by microwave irradiation, Appl. Therm. Eng. 26 (2006) pp 745–750.
G. Xiong, X. He, Z. Zhang, Microwave-assisted extraction or saponification combined with microwave-assisted decomposition applied in pretreatment of soil or mussel samples for the determination of polychlorinated biphenyls, Analytica Chimica Acta 413 (2000) 49–56.
H. Takashima, L. Ren, Y. Kanno, Catalytic decomposition of TCE under microwave, Catalysis Communications 5 (2004) 317–319
C. J. Jou, Degradation of Pentachlorophenol with Zero Valence Iron Couple with Microwave Energy, Journal of Hazardous Materials.
Geiger, C. L., C. Clausen, R. W. DeVor, K.M .Milum ,C. A. Clausen ,and J. W. Quinn, Remediation of DNAPL and Heavy Metal Contamination Using Emulsified Zero-Valent Metal Particles, Enviro Nano (2006) 15-30.
Lien, H. L., and H. T. Su, Promoter Effect of Aluminum Oxide on Enhanced Hydrodechlorination of Carbon Tetrachloride with Zero-Valent Aluminum , Journal of the Chinese Institute of Environmental Engineering, Vol. 14, No,(2004) , pp 261-267.
Matheson, L. J., and P. G. Tratnyek, , Reductive dehalogenation of chlorinated methanes by iron metal, Environmental Science and Technology 28,(1994), 2045-2053
Zhang, W. X., Nanoscale Iron Particles for Environmental Remediation: An Overview, Journal of Nanoparticle Research, Vol.5,(2003), 323-332.
Hsing-Lung Lien ,Wei-Xian Zhang,“Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination”, Applied Catalysis B: Environmental, 77, (2007), 110–116.
Hisao Hidaka, Aiko Saitou, Haruo Honjou, Kazuo Hosoda, Masafumi Moriya, Nick Serpone,,“Microwave-assisted dechlorination of polychlorobenzenes by hypophosphite anions in aqueous alkaline media in the presence of Pd-loaded active carbon”, Journal of Hazardous Materials, 148, (2007), 22–28
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top