(3.80.6.131) 您好!臺灣時間:2021/05/15 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許家豪
研究生(外文):Jia-Hau Shiu
論文名稱:開口模式對燃料燃燒之效應探討
論文名稱(外文):Effect of Different Opening Geometry on Fuel Burning in an Enclosure
指導教授:蔡匡忠蔡匡忠引用關係
指導教授(外文):Kuang-Chung Tsai
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:126
中文關鍵詞:開口模式自然通風閃燃
外文關鍵詞:opening geometryventilationflashover
相關次數:
  • 被引用被引用:1
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:3
Kawagoe已證實侷限空間火災之發展會受開口通風之影響,但先前研究大多只針對單一門形式探討,而一般侷限空間還包含窗形式甚至是多開口形式(門+門、窗+窗或門+窗)等,其不同通風情形對燃燒有何影響?本研究即針對不同通風情形對燃燒之影響進行探討,瞭解不同通風模式對火災成長及閃燃發生之影響。
本研究以不同燃料(汽油、異丙醇)改變不同開口模式(大小、位置、單(雙)開口)在1/3 ISO 9705尺寸房間中進行實驗,量測熱釋放率、天花板溫度、地板熱通量、質量損失率、煙層高度等實驗參數,評估開口模式對燃料燃燒之關係。
研究發現通風對火災發展之效應十分顯著,並隨火災階段受火源大小、通風口位置而影響。當火源較小且單開口時(不會導致閃燃),通風雖會因通風口位置導致進出口氣流之差異及當開口位於下方時因門楣累積熱煙層增加對火源之熱回饋,但對火源熱釋放率之影響並不顯著,與空燒情形(free burning)之熱釋放趨勢相近;雙開口(前後、前側)時進出通氣量增加但亦未影響火勢成長,且雙開口前後及前側之位置亦無效應。當火源較大時(會導致閃燃),於閃燃前(成長期)可分為二階段:通風於成長期初期對火勢成長仍不影響,因火源仍小使之與上述小火源情形(不會導致閃燃)相同;但當火勢逐漸擴大,雖尚未發生閃燃,但侷限空間效應已開始造成熱釋放率較空燒情形(free burning)高。對相同通風因子之情形而言,若門檻存在,會阻擋冷空氣進入,使冷卻效應薄弱,但對燃燒影響不大;若門楣存在,會蓄積煙層造成較大熱回饋,會提升燃燒,但因而減少之開口大小會減少可供通風之開口面積,抑制燃燒,此二相反效應同時存在,當門檻或門楣高度改變對燃燒之影響就十分複雜。此外,開口於上方時較位於下方時造成較大通風量,使得閃燃較快發生。閃燃後,火勢依然受上述二效應(冷卻、熱回饋)之影響,造成複雜之效應。
Kawagoe’s study has proved that opening ventilation had a great effect on the fire growth in an enclosure. However, most of previous investigations focused on cases with single door ventilation. Ventilations in other types including window, window/door exist in ordinary enclosures. This study investigated the effect of opening geometry on fuel burning in an enclosure.
An experimental compartment was produced in the scale of 1/3 ISO 9705 room test. A pan fuelled with gasoline or iso-propanol was placed in the center of this compartment and five types of opening geometry were set. The geometry of the opening included full opening, 1/2 and 2/3 upper opening and lower opening. The width of the opening was fixed. Additionally, the cases of two opposite openings and neighboring openings were investigated. After ignition by a small fire, heat release rate, temperature below ceiling, heat flux onto floor, fuel mass loss rate and smoke layer height were measured to analyze the relationship between opening geometry and fuel burning.
The experimental results in this study demonstrated strong effect on fire growth of the ventilation types. As a fire was small and will not cause flashover, the influence on fire growth was not obvious although the directions of inflows and outflows were different and the heat feedback to the floor was higher for the cases with door header. The heat release rate was almost identical to that of free burning case. As the fire grew further and will cause flashover, the ventilation effect was still insignificant in the early growth stage but then started to influence the fire growth even before flashover. The presence of doorsill and windowsill decrease the amount of inflow of cold air, however, the effect was not strong. Additionally, the presence of door header and window header help accumulate hot smoky layer, causing heat feedback to the fuel to enhance burning. However, the size of opening was consequently decreased and the air entrained was restrained. The integrated effect was complex. Furthermore, flashover occurred earlier in the cases with upper openings. After flashover, the fire growth was continuously governed by the ventilation effect.
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 IX
一、緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法及步驟 2
二、文獻回顧 3
2.1 開放空間與侷限空間火災 3
2.1.1 通風效應對燃燒之影響 4
2.2 侷限空間內部熱傳情形 6
2.3.1 閃燃發生時間 9
2.3.2 液體燃料質量損失率 14
2.3.2 熱釋放率 16
2.3.3 地板熱通量 16
2.3.4 侷限空間內溫度 17
2.4窗形式通風對侷限空間燃燒之影響 17
2.5其他形式通風對侷限空間燃燒之影響 17
三、通風效應評估實驗 19
3.1 實驗規劃 19
3.2 實驗設備 20
四、實驗結果分析及討論 24
4.1 閃燃判定基準 24
4.2 汽油單開口實驗 26
4.2.1 通風因子對未發生閃燃現象燃燒之影響(汽油單開口實驗) 26
4.2.2 通風因子對發生閃燃現象燃燒之影響(汽油單開口實驗) 33
4.3 異丙醇單開口實驗 40
4.3.1 通風因子對未發生閃燃現象燃燒之影響(異丙醇單開口實驗) 40
4.3.2 通風因子對發生閃燃現象燃燒之影響(異丙醇單開口實驗) 47
4.4 汽油前後雙開口實驗 54
4.4.1 通風因子對發生未閃燃現象燃燒之影響(汽油前後雙開口實驗) 54
4.4.2 通風因子對發生閃燃現象燃燒之影響(汽油前後雙開口實驗) 61
4.5 異丙醇前後雙開口實驗 68
4.5.1 通風因子對未發生閃燃現象燃燒之影響(異丙醇前後雙開口實驗)68
4.5.2 通風因子對發生閃燃現象燃燒之影響(異丙醇前後雙開口實驗) 74
4.6 汽油前側雙開口實驗 81
4.6.1 通風因子對未發生閃燃現象燃燒之影響(汽油前側雙開口實驗) 81
4.6.2 通風因子對發生閃燃現象燃燒之影響(汽油前側雙開口實驗) 88
4.7 異丙醇前側雙開口實驗 95
4.7.1通風因子對未發生閃燃現象燃燒之影響(異丙醇前側雙開口實驗)95
4.7.2 通風因子對發生閃燃現象燃燒之影響(異丙醇前側雙開口實驗) 101
4.8 不同開口模式整合分析 109
五、結論及建議 119
參考文獻 122
1. Kawagoe K., ”Fire behaviour in room”, Report No. 27, Building Research Institute, Tokyo, 1958.
2. Mulholl G.W.,”Somke production and properties”, The SFPE Handbook of Fire Protection Engineering 2nd Edition, Section 2/chapter 15, 1995.
3. Thomas I.R., Ian D.B., “Fires in enclosures with single ventilation openings-comparison of long and wide enclosures”, International Association for Fire Safety Science Sixth Symposium, 1999, in press.
4. Pretrel H., Querre P., Forestier M., “Experimental study of burning rate behaviour in confined and ventilated fire compartments”, Fire Safety Science -- Proceedings of the Eight International Symposium, International Association for Fire Safety Science 2005; 1217-1228.
5. Delichatsios M., Silcock G., “Fully involved enclosure fires: effects of fuel type, fuel area and geometry”, Proceedings of the 7th IAFSS symposium, Beijing, 2002, pp59-73.
6. Graham T.L., Makhviladze G.M., “On the theory of flashover development”, Fire Safety Journal 1995; 25: 229-259.
7. Emmons H.W., “Vent Flow,” The SFPE Handbook of Fire Protection Engineering (2nd ed), DiNenno P.J.(ed), Society of Fire Protection Engineers, , Quincy, MA 02269, 1995, p. 2/32.
8. Quintiere J.G., Wang L., “A general formula for the prediction of vent flows” Fire Safety Journal
9. Patrick M. K., Kathryn C.K., “Flashover and Fire Analysis-A Discussion of
the Practical Use of Flashover in Fire Investigation”, CFEI, 2003.
10. Waterman T.E., “Room flashover-criteria and synthesis”, Fire Technology, 4, 25-31.
11. Hagglund B., Jannson R., Onnermark B., “Fire development in residential rooms after ignition from nuclear explosions”, FOA C 20016-DG (A3), Forsvarets Forskningsanstalt, Stockholm, 1974.
12. Heselden A.J.M., Melinek S.J., “The early stages of fire growth in a compartment. A co-operative research programme of the CIB”, First Phase. Fire Research Note No. 1029.
13. Parker W.J., Lee B.T., “Fire build-up in reduced size enclosures In: Butler MJ, Slater JA, editors”, Fire safety research, Proc Symp Held at the NBS, Gaithersburg, MD on 22 August 1973 NBS.
14. Fang J.B., “Fire buildup in a room and the role of interior finish materials”, NBS (U.S.), TN 879, 1975.
15. Babrauskas V., “Combustion of mattresses exposed to flaming ignition sources, Part I, Full-scale tests and hazard analysis”, NBS (U.S.), NBSIR 77-1290, 1977.
16. Babrauskas V,” Full-scale burning behavior of upholstered chairs”, NBS (U.S.), TN 1103, 1979.
17. Budnick E.K., Klein D.P., Laughlin R.J., “Mobile home bedroom fire studies: the role of interior finish”, NBS (U.S.), NBSIR 78-1531, 1978.
18. Lee B.T., Breese J.N., “Submarine compartment fire study – fire performance evaluation of hull insulation”, NBS (U.S.), NBSIR 78-1584, 1979.
19. Fang J.B., Breese J.N., “Fire development in residential basement rooms”, NBS (U.S.), NBSIR 80-2120, 1980.
20. Quintiere J.G., McCaffrey B.J., “The burning of wood and plastic cribs in an enclosure”, I. NBS (U.S.), NBSIR 80-2054, 1980.
21. Thomas P.H., “Testing products and materials for their contribution to flashover in rooms”, Fire Mater 1981; 5: 103-111.
22. Spearpoint M., Mowrer F.W., McGrattan K., “Simulation of a compartment flashover fire using hand calculation, zone model and field model”, October 4-8, 1999, Chicago, IL, Society of Fire Protection Engineers, Boston, MA, 3-14 pp, 1999.
23. Harmathy T.Z., “Mechanism of burning of fully-developed compartment fires”.Combustion and flame, 31,265-273.
24. Heselden A.J.M., Melinek S.J., “The early stages of fire growth in a compartment.A co-operative research programme of the CIB (Commission W14). First Phase. Fire Research Note No. 1029.
25. Brbrauskas V., “Estimating room flashover potential”, Fire Technol 1980; 16(2):94-103.
26. Hagglund B., “Estimating flashover potential in residential rooms”, (FOA Rapport C 20369-A3) Forsvarets Forkningsanstalt, Stockholm, 1980.
27. McCaffrey B.J., Quintiere J.G., Harkleroad M.F., “ Estimating room temperatures and the likelihood of flashover using fire data correlations”, Fire Technol 1981;17(2):98-119.
28. Hamins A., Johnsson E., Donnelly, Maranghides, “Energy balance in a large compartment fire” , Fire Safety Journal 43 (2008) 180-188.
29. Tofilo P., Delichatsios M.A., Silcock G.W.H., “Effect of fuel sootiness on the heat fluxes to the walls in enclosure fires”, Fire Science and Technology 2006; 25(5): 601-603.
30. Pierce J.B.M., Moss J.B., “Smoke production, radiation heat transfer and fire growth in a liquid-fuelled compartment fire”. Fire Safety Journal 2007; 42: 10-320.
31. Makhviladze G.M., Shamshin A.V., Yakush S.E., Zykov, “Experimental and numerical study of transient compartment fire”, Combustion, Explosion, and Shock Waves 2006; 42(6):723-730.
32. Feng R., Huo R., Yu H.C., “Experimental study on the character of oil-pool-fire burning in enclosed space”. Fire Science and Technology 2005; 24(3): 288-291.
33. Parkes A.R., Fleischmann C.M., 2005. “The Impact Of Location And Ventilation On Pool Fire In A Compartment”, Fire Safety Science 8: 1289-1300. doi:10.3801/IAFSS.FSS.8-1289.
34. Drysdale D., “An Introduction to Fire Dynamics”, Second Edition, John Wiley and Sons, 1998.
35. Song H., Yang L.Z., Fan W.C., “Numerical Simulation of Effect of Ventilation on Flashover”, Fire Safety Science Vol.10,No. 3(2001).
36. Sanderson V.E., Rubini P.A., Moss J.B., “The effect of vent size of a compartment fire: Numerical simulation and validation”, Proceedings of the Eight International Conference- INTERFLAM''99. Interscience Communications Ltd., pp. 1189-1194,1999. ISBN 0-9532312-1-6.
37. Himmoto K., Tsuchihashi T., Tanaka Y., Tanaka T., “Modeling thermal behaviors of window flame ejected from a fire compartment Fire Safety Journal 44 (2009) 230-240.
38. Yii, E. H.; Buchanan, A. H.; Fleischmann C. M. “Simulating the effects of fuel type and geometry on post-flashover fire temperatures”, Fire Safety Science 41 (2006) 62-75.
39. Weng W.G., Fan W.C., Yang L.Z., Song H., Deng Z.H., Qin J.; Liao G.X., “Experimental study of back-draft in a compartment with openings of different geometries”, Combustion and Flame, Volume 132, Number 4, March 2003 , pp. 709-714(6).
40. Kumar R., Naveen M., “An experimental fire in compartment with dual vent on opposite walls” ,Combustion Science and Technology, Vol.179, No.8, 1527-1547
41. Kumar R., Naveen M., “Compartment Fires :CALTREE and Cross-Ventilation” Combustion Science and Technology, Volume 179 , pp. 1549-1567(19).
42. Meric B., Vandevelde P., “Experimental study of natural roof ventilation in
full-scale enclosure fire tests in a small compartment”, Fire Safety
Journal, Vol. 42, p. 523, 2007.
43. McCaffrey B. J., Quintiere J. G., Harkleroad M. F., “Estimating Room Temperatures and the Likelihood of Flashover Using Fire Test Data Correlations”, Fire Technology, Vol. 17, p. 98, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top