(44.192.66.171) 您好!臺灣時間:2021/05/18 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄒文成
研究生(外文):Wen-Cheng Tsou
論文名稱:高週波太陽能熱水器之開發與運用
論文名稱(外文):A Development and Application Study on a High Frequency Oscillator Using in the Solar Heating System
指導教授:戴華山戴華山引用關係
指導教授(外文):Hua-Shan Tai
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:高週波振盪器
外文關鍵詞:high frequency oscillator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:1
本實驗模擬紅外光、可見光、紫外光照射太陽能真空管集熱器產生水溫變化,實驗得知紅外光產生熱傳最佳,因真空管如同溫室,紅外光穿入後大部份能量留管内。另實驗紅外燈、鎢絲燈同時照射產生溫升,不等於各別燈照射產生溫升相加,其溫升是由紅外燈照射為影響熱傳主因。比較28.8W高週波振盪器與250 W紅外燈產生熱傳,高週波振盪器加熱產生温升1.5℃/min,而紅外燈照射產生温升1℃/min,此狀況得知熱對流優於熱輻射。就流體力學而言,擾流熱傳速率優於層流熱傳速率,對於太陽能真空管熱水器加裝高週波振盪器,則增加流體擾動及熱傳。依實驗數據作曲線迴歸分析,紅外燈照射真空管集熱器之熱傳温度與時間關係之方程式為二次多項式y= -0.0004x2+0.1916 x+30.876(y=温度,x=時間),紅外燈照射真空管集熱器之熱傳温度變化率與時間關係之方程式為指數方程式 y=0.2496e-0.0072x(y=温度變化率,x=時間),從改變輸入電壓之高週波振盪器對水溫初終溫度差,得知為乘幕方程式Y=0.0023X1.915(Y=温度差,X=伏特),水溫變化與輸入電壓伏特1.915次方成正比,該些方程式將來可運用於設計溫度控制軟體。經探究高週波振盪器運用於冷凝水製程單元之可行性之程序:太陽能熱水器貯水槽70℃→高週波振盪器→氣冷式冷凝器→蜂網式碰撞設施→液面下收集式儲桶,經此程序得冷凝水130-145毫升/時,最後階段考慮飲用安全需經滅菌單元,可設計紫外線殺菌器於冷凝水儲槽。
This experiment simulates ultraviolet, visible light and infrared rays on evacuated collector tube to see changes of water temperature. The result shows infrared rays do better on heat transfer. The evacuated collector tube is like a green house when infrared rays enter and much energy is left. At the same time, infrared and tungsten filaments make the rise of temperature, which is higher than total of other lights. Among them, infrared light is the main reason of heat transmission. To compare 28.8W oscillator and infrared light, the former makes the temperature rise 1.5℃/min, and the latter 1.0℃/min. That is, heat transfer is better than radiation. As it goes to hydrodynamics, turbulent flow speed is better than laminar flow. Therefore, the solar hot water system with oscillator increases flow perturbation and heat transfer. Based on the data to make Curvilinear Regression analysis, the equation of temperature of heat transfer (using infrared light on all-glass evacuated-tube collector ) and time is quadratics, y= -0.0004x2+0.1916 x+30.876 (y=temperature, x=time). The equation of temperature of heat transfer (using infrared light on all-glass evacuated-tube collector ) and time is exponential quadratics, y=0.2496e-0.0072x(y=rate of temperature changes,x=time)From differences of water temperature (beginning to the end) by changing voltage of the oscillator, the result is powers of equation, Y=0.0023X1.915(Y= differences of temperature,X=voltage). Differences of water temperature and the voltage show direct ratio. These equations could be applied for temperature control software. Explore the feasibility of the oscillator on drinking water process : Solar hot water system water tank 70℃ → ultrasonic oscillator → air-cooled condenser → beehive collision equipment → under-liquid collective barrel, Through this procedure, we could get 130-145ml /hr condensate. For drinking safety, the ultraviolet disinfector could be set in the tank as the final step.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅷ
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 研究架構 5
第二章 文獻回顧 7
2-1 太陽光輻射 7
2-2 熱傳原理 10
2-3 高週波之原理與應用 13
2-4 增濕與減濕單元操作 17
2-5 霧滴捕集機制 20
第三章 實驗 21
3-1 實驗材料設備 21
3-2 實驗步驟與方法 22



第四章 結果與討論 30
4-1 不同光源對真空管照射之熱傳測試 30
4-2 光源對真空管內不同水温之熱傳測試 36
4-3 不同能量鎢絲燈對真空管照射之熱傳測試 41
4-4 不同光源同時對真空管照射之熱傳測試 44
4-5 太陽能真管空集熱器戶外實測 47
4-6 迴歸分析 51
4-7 高週波振盪器熱傳實驗 59
4-8高週波振盪器搭配紅外燈對真空管之熱傳測試 68
4-9 高週波振盪器運用太陽能熱水系統製造冷凝水可行性 71
第五章 結論與建議 78
5-1 結論 78
5-2 建議 80
參考文獻 81
1、賴耿陽譯著,1981,「 太陽能基礎與應用」,復漢出版社。
2、黃清霖,呂錫民,1996,“ 選擇性太陽能吸收膜之開發”,太陽能學刊,1卷,2期,頁10-14,10月。
3、黃秉均,1998,“真空管儲置式太陽能熱水器”,太陽能學刊,3卷,2期,頁21-23,10月。
4、亞特仕真空管太陽能熱水設備資料,亞特仕股份有限公司。
5、Yin Zhiqiang,“Development of solar thermal systems in chian”,Solar Energy Materials & Solar Cell,vol.86,p.427-442,2005.
6、卓胡誼,1990 ,“太陽能蒸餾水機之研發”,崑山技術學院電機系。
7、沈銘秋,黃秉均,楊建裕,邱煥男,余金億,2004,“新型太陽能蒸餾水器之研發”,太陽能及新能源學刊,9卷,2期,頁2-6,12月。
8、張富祿,1984,「化工單元操作」,徐氏基金會出版。
9、李寶珠譯著、1992,「太陽能概論」,科技圖書。
10、G.N.Tiwari,2006,Solar Energy,Alpha Science Inetrnational Ltd.
11、田褔助,1982,「單元操作與輸送現象」,曉園出版社。
12、鄧禮堂,1982,「單元操作實驗」,協志工業叢書。
13、J.R.Welty,C.E.Wicks,R.E.Wilson,1986,Fundamentals of Momentum Heat and Mass Transfer,東南書報社。
14、陳熹棣,1995,「高週波基礎理論與應用」,金華科技圖書。
15、施博豐,1982,「電工學概要」,興業圖書公司。
16、高橋勘次郎等,1997,「高波工業應用技術」,復興出版社。
17、李公哲譯,1992,“環境工程”,國立編譯所。
18、J.I.Nadaf,G.R.Gogate and R.R. Kulkarni,“Experimental Study of Solar Collectors with Tubes Partially Filled with Porous Substrates”,Journal of the Solar Energy Society of India,vol.13(1&2),p.41-43,2003.
19、Suresh Kumar,B.K.Chourasia and S.C.Mullick ,“ Wind Heat Trasfer Coefficient in Flat Plate Solar Collectors”,Journal of the Solar Energy Society of India”,vol.15(2),p.29-36,2005.
20、呂錫民,李天源,胡洋溢,2007,“自然循環式太陽能熱水器不同迴流方式性能分析比較”,太陽能及新能源學刊,12卷,1期,頁16-18,6月。
21、何明錦,2006 ,“台灣太陽能能設計用標準日射量與相關檢驗規範之研究”,內政部建築研究所協同研究報告。
22、王志耀,1998 ,“熱管於太陽能源開發上運用”,八十七年節約能源論文發表會論文專輯。
23、環境衛生及毒物管理處,2003,“安全飲用水”, 行政院環境保護署。
24、Mullick. S.C. and Samdarshi, S.K., 1988, An Improved Technique for Computing the Top Heat Loss Factor of a Flat Plate Collector with a Single Glazing, ASME J. Solar Energy Engg" 110. pp. 262-267.
25、Samdarshi. S.K. and Mullick. S.C., 1991, Analytical Equation for the Top Heat Loss Factor of a Flat Plate Collector with Double Glazing, ASMEJ. Solar Energy Engg., 113. pp.117-122.
26、McAdams, W.H.. 1954, Heat Transmission, 3rd edition, McGraw Hill. New York.
27、Wattmuff, J.H., Charters, W.W.S. and Proctor. D.. 1977, Solar and Wind Induced External Coefficients for Solar Collectors, Int. Revue d'' Hellio-technique, 2, p. 56.
28、Test. F.L., Lessman. R.C.L. and Johary. A., 1981, Heat Transfer during Wind Flow Over Rectangular Bodies in Natural Environment, ASMEJ. Heat Transfer. 103. pp. 262-267.
29、Sukhatme, S.P, 1999, Solar Energy, 2-'' Ed., Tata McGraw-Hill, New Delhi, pp. 152-248.
30、Duffic, J.A. and Beckman, W.A., 1991, Solar Engineering of Thermal Processes, 2''" Ed., John Wiley & Sons, New York, pp. 320-322.
31、Alkam, M.K. and AI-Nimr, M.A., 1999, Solar Collectors with Tubes Partially Filled with Porous Substrates, ASME Journal of Solar Engineering, 121, pp. 20-24.
32、Indian Standards IS 12933 (Parts 1, 2 and 5), 2003, Solar I-''lat Plate Collector: Specifications, Bureau of Indian Standards, Manak Bhawan, New Delhi.
33、Garg, H.P. and Kandpal, T.C., 1999, Laboratory Manual on Solar Thermal Experiments, Narosa Publishing House, New Delhi, pp. 154-159.
34、Kumar, S.. Sharma. V.B., Kandpal, T.C. and Mullick, S.C., 1997, Wind Induced Heat Losses from Outer Cover of Solar Collectors, Renewable Energy, 10(4), pp. 613-616.
35、Akhtar. N. and Mullick. S.C., 1998. Existing Correlations for Wind Heat Transfer Coefficient and Impact on the Top Heat Loss Factor of Flat Plate Collectors with Single Glazing, SESI Journal, 8(2), pp. 105-112.
36、Samdarshi. S.K., 1992, Study of Top Heat Loss Factor of Flat Plate Solar Collector, Ph.D. Thesis, Centre for Energy Studies, Indian Institute of Technology Delhi.
37、Sharma, V.B.. 1994, Upward Heat Flow and Evaporation in a Basin Type Solar Still, Ph.D. Thesis, Centre for Energy Studies, Indian Institute of Technology Delhi.
38、Akhtar, N., 1999, Upward Heat Losses in Solar Thermal Collectors, Ph.D. Thesis, Centre for Energy Studies, Indian Institute of Technology Delhi.
39、Khan, S.Y.. 2005. Thermal Performance Evaluation of Solar Box Cookers. Ph.D. Thesis, Centre for Energy Studies, Indian Institute of Technology Delhi.
40、Khan, S.Y., Akhtar. N. and Mullick, S.C., 2001, Indoor Experimental Validation of Glass Cover Temperatures and Upward Heat Flow Coefficients of a Single Glazed Hat Plate Solar Collector, SESI Journal, 11(2). pp. 65-71.
41、Mullick, S.C. and Gupta, M.C., 1974. Wind Forced Air Flow in Solar Collector-cum-Regenerator. Proceedings of Sixth Meeting of All India Solar Energy Working Group and Conference, Allahabad, pp. 3-45 to 3-48.
42、Mullick, S.C. and Gupta, M.C.. 1975, Atmospheric Solar Brine Regenerator, International Solar Energy Conference, Los Angeles, Volume of Extended Abstracts, pp. 410-411.
43、Mullick. S.C., 1976, Solar Air Conditioning: Regeneration of Absorbent Solution, Ph.D. Thesis, Department of Mechanical Engineering, Indian Institute of Technology Madras.
44、Duffle. J.A. and Beckman, W.A., 1991, Solar Engineering of Thermal Processes, John Wilcy & Sons.. New York. p. 392.
45、Evans, D.L., Rule, T.T. and Wood, B.D., 1982. A New Look at Long Term Collector Performance and Utilizability, Solar Energy, 18, pp. 13-23.
46、Garg, H.P. and Gupta. C.L., 1967. Design of Flat Plate Solar Collectors for India. J. oflnst. Of Engrs. (India), PtME5, 47(9). pp. 382-394.
47、Gupta, C.L.. 1971, On Generalizing the Dynamic Performance of Solar Energy Systems, Solar Energy, 13. p. 301.
48、Gupta, C.L.. 1986. Solar Water Heating: Design Methods in Solar Water Heating Systems, H.P. Garg (Ed.). D. Reidel, Boston, pp. 371-381.
49、Gupta, C.L., 1998, Solar Thermal Basics in Renewable Energy: Basics and Technology, C.L. Gupta (Comp.), Auroville Foundation, Pondicherry, pp. 50-59.
50、Reddy, T.A., 1987, The Design and Sizing of Active Solar Thermal Systems. Oxford, p. 259.
51、Sukhatme, S.P.. 1984, Solar Energy. Tata-McGraw Hill. New Delhi, p. 83.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文