(3.236.222.124) 您好!臺灣時間:2021/05/11 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱柏凱
研究生(外文):Bo-Kai Chiu
論文名稱:應用多目標遺傳基因演算法於機械手臂加工最佳化
論文名稱(外文):Optimization of Robotic Arm Manipulator Using Multi-Objective Genetic Algorithms
指導教授:劉東官劉東官引用關係
指導教授(外文):Tung-Kuan Liu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:奇異點操作性多目標遺傳基因演算法機械手臂
外文關鍵詞:singularity pointRobotic Arms ManipulatorMultiple Objective Genetic AlgorithmsManipulability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:479
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
機械手臂在進行加工時,常因軸關節多餘(Redundance)的作動,失去了該有的工作效率,而減少產品的產出。且在加工過程中亦容易有奇異點問題的發生,使其失去一個操作自由度,進而降低操作性能。因此,為了增加加工效率,避免發生奇異點現象,本研究利用操作性作為奇異點量測參考值,結合軸關節平滑性,再利用多目標遺傳基因演算法( Multiple Objective Genetic Algorithms , MOGAs )求解加工路徑軸關節空間之最佳逆向運動解與最佳加工位置。
本論文主要是針對兩種不同的工業機械手臂,利用Denavit Hertenberg所提出的方法,求解機械手臂尖端執行器與基座之空間座標系,並在不失軸關節最小變動量下,搜尋機械手臂最佳加工環境位置與最佳操作性。最後,為了呈現實驗所達到之成果及避免錯誤的產生,實驗中將會透過CATIA軟體進行實體機械手臂動作模擬。
The efficiency of robotic arm manipulators is greatly reduced due to the extra moves made by axle joints, and will eventually leads to underproduction. Also, the flexibility and manipulability are inevitably decreased during processing because of the emergence of singularity point. Therefore, in order to increase the processing efficiency and avoid the singularity point phenomenon, exploring the best inverse kinematics solutions of axle joints is the primary goal of this research. Measurements of singularity points based on the performance of manipulators, smoothness of axle joints and multiple objective genetic algorithms are applied to achieve the goal.
Two different industrial robotic arm manipulators are targeted in this research. The ultimate robotic arm manipulators positioning and performance are researched on condition that the least variation quantity has to be achieved. To do so, formulations suggested by Denavit Hertenberg are keys to explore space coordinate system of manipulator base and manipulator tip. Finally, simulations will be conducted by utilizing CATIA throughout the whole experiment to ensure that the outcome of the experiment will not be jeopardized by miscalculations.
中文摘要
ABSTRACT
誌謝
目錄
表目錄
圖目錄
第一章 緒論
1.1 前言
1.2 研究動機和目的
1.3 文獻回顧
1.4 本文架構
第二章 機械手臂之基礎理論
2.1 座標轉換基礎概念
2.2 齊次變換矩陣
2.3 D-H座標變換法
2.4 機械手臂微量的變動與JACOBIAN矩陣的變換
2.4.1 機械手臂微量運動的介紹
2.4.2 Jacobian矩陣的定義
2.4.3 Jacobian矩陣演繹法
第三章 遺傳基因演算法
3.1 發展與研究
3.1.1 初始染色體的產生
3.1.2 染色體之選擇和複製
3.1.3 基因交叉
3.1.4 基因突變
3.2 小生境的發展與研究
3.3 搜尋終止條件
第四章 應用小生境遺傳基因演算法於機械手臂軸關節參數最佳化
4.1 目標函數的定義
4.2 小生境遺傳基因演算法的流程
4.2.1 染色體之編碼
4.2.2 適應值之設計及計算
4.2.3 染色體之選擇
4.2.4 染色體之交叉
4.2.5 染色體之突變
4.2.6 小生境之演化步驟:
4.3 以六軸PUMA 560機械手臂為例
4.3.1 實驗結果與比較
4.4 以五軸RV_E3JM機械手臂為例
4.4.1 實驗結果與比較
第五章 機械手臂加工位置與軸關節之最佳化
5.1 多目標最佳化概念
5.2 多目標遺傳基因演算法之流程
5.3 多目標基因演算法之步驟
5.3.1 定義目標函數
5.3.2 基因編碼的設計
5.3.3 適應值的評估與分配
5.3.4 染色體之選擇、交叉與突變
5.4 以六軸PUMA 560機械手臂為例
5.4.1 PUMA 560 Jacobain的推導
5.4.2 實驗結果
5.5 以五軸RV_E3JM機械手臂為例
5.5.1 RV_E3JM Jacobain的推導
5.5.2 實驗結果
第六章 結論與未來展望
參考文獻
[1]Holland John H.,1992,“Adaptation in Natural and Artificial Systems”, Cambridge, Mass. MIT Press.
[2]Schaffer, J. D.,“Multiple Objective Optimization with Vector Evaluated Genetic Algorithms”, Proc. of 1st International Conference on GAs and Their Applic., Hillsdale, NJ, USA,1985,pp.93-100.
[3]Fonseca, C. M. & P. J. Fleming, “Genetic Algorithms for Multiobjective Optimization:Formulation, Discussion and Generalization”, Proc. of the 5th International Conference on GAs, San Mateo, CA,USA, 1993,pp. 416-423.
[4]Deb, K., A. Pratap, S. Agarwal , T. Meyarivan, 2002, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ”, IEEE Trans. on Evolutionary Comput., Vol. 6, No. 2, pp.182-197.
[5]Liu, T. K. and Ishihara, T., 2005,“Multi-Objective Genetic Algorithms for the Method of Inequalities”, In Control Systems Design–A New Framework, chapter 8, Ed. V. Zakian. Springer–Verlag, London, UK .
[6]Mitsi, S., Bouzakis, K.-D.,Sagris, D., Mansour, G. 2008, “Determination of Optimum Robot Base Location Considering Discrete End-effector Positions by Means of Hybrid Genetic Algorithm”, Robotics and Computer Integrated Manufacturing, Vol.24,pp. 50-59.
[7]P.Th. Zacharia, N.A. Aspragathos , G. 2005, “Optimal Robot Task Scheduling Based on Genetic Algorithms ”, Robotics and Computer-Integrated Manufacturing, Vol.21,pp. 67-79.
[8]Wei-Min, Yun; Yu-Geng, Xi , 1996, “Optimum motion planning in joint space for robots using genetic algorithms”, Robotics and Autonomous Systems, Vol. 18, pp. 373-393 .
[9]Goldberg, D.E.,Richardson, J.J.,“Genetic Algorithms with Sharing for Multimodal Function Optimization”,Genetic algorithms and their application: Proceedings of the Second International Conference on Genetic Algorithms, Massachusetts,USA,1987,pp.41-49.
[10]Goldberg, D.E., Deb, K. ,“An Investigation of Niche and Species Formation in Genetic Function Optimization”, Proceedings of the third international conference on Genetic algorithms, USA,1989,pp.42-50.
[11]Tsai, J. T., T. K. Liu, and J. H. Chou, 2004, “Hybrid Taguchi Genetic Algorithm for Global Numerical Optimization”, IEEE Transaction on Evolutionary Computation, Vol. 8, pp. 365-377.
[12]S. Kucuk, Z. Bingul, 2006, “Comparative Study of Performance Indices for Fundamental Robot Manipulators”, Robotics and Autonomous Systems ,Vol.54 ,pp.567–573.
[13]K. Koser, 2004, “A Slider Crank Mechanism Based Robot Arm Performance and Dynamic Analysis”, Mechanism and Machine Theory ,Vol.39,pp.169–182.
[14]S.K. Dwivedy, P. Eberhard, 2006, “Dynamic Analysis of Flexible Manipulators, a Literature Review ”, Mechanism and Machine Theory ,Vol.41,pp.749–777.
[15]L. Tian, C. Collins, 2004, “An Effective Robot Trajectory Planning Method Using a Genetic Algorithm”, Mechatronics ,Vol.14,pp.455–470.
[16]V. Francisco, M. Vicente, B. Antonio, 2006, “Trajectory Planning in Workspaces with Obstacles Taking into Account the Dynamic Robot Behaviour”, Mechanism and Machine Theory, Vol. 41, 2006, pp. 525-536 .
[17]Pires, E.J. Solteiro, de Moura Oliveira, P.B., Machado, J.A. Tenreiro, 2007, “Manipulator Trajectory Planning Using a MOEA”, Applied Soft Computing Journal, Vol.7, pp. 659-667.
[18]Beiner, L., 1997, “Singularity Avoidance for Articulated Robots”, Robotics and Autonomous Systems, Vol.20, pp. 39-47.
[19]Muszynski R., 2002, “A Solution to the Singular Inverse Kinematic Problem for a Manipulation Robot Mounted on a Track”, Control Engineering Practice, Vol.10, pp. 35-43.
[20]Yoshikawa T., 1985, “Manipulability of Robotic Mechanisms”, The International Journal of Robotics Research, Vol.4, pp. 3-9.
[21]晉茂林, 2000 ,“機器人學”,五南圖書,台北.
[22]雷德明,嚴新平, “多目標智能優化演算及其應用”,科學出版社,中國北京.
[23]林志哲, “具贅餘自由度機械臂之運動規劃與奇異點問題之解決”,大葉學報 ,2002 ,pp41-50.
[24]王小平,曹立明, “遺傳算法理論、應用與軟件實現”,西安交通大學出版社,中國西安。
[25]郭祐銘, “應用小生境遺傳基因演算法於多自由度機械手臂之最佳化操作”,國立高雄第一科技大學碩士論文,2008.
[26]杜軍平、吳立成、胡金春等譯, “人工智能機器人學導論”,電子工業出版社,中國北京.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔