(3.238.36.32) 您好!臺灣時間:2021/02/27 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾建勳
研究生(外文):Tseng, Chien-Hsun
論文名稱:電腦化MST科際整合課程對國小學生科技素養與科技創造力之影響
論文名稱(外文):The Effects of Computerized MST (Mathematics, Science, and Technology) Interdisciplinary Curricula on Technological Literacy and Technological Creativity for Elementary Students
指導教授:曾國鴻曾國鴻引用關係楊宏仁楊宏仁引用關係
指導教授(外文):Tseng Kuo-Hung, Yang Hung-Jen
學位類別:博士
校院名稱:國立高雄師範大學
系所名稱:工業科技教育學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:173
中文關鍵詞:C-MST科際整合課程科技支持學習科技素養科技創造力
外文關鍵詞:Computerized MST interdisciplinary curriculalearning with technologytechnological literacytechnological creativity
相關次數:
  • 被引用被引用:9
  • 點閱點閱:489
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
鑒於科技素養與科技創造力是國小學生進行「生活準備」的核心能力,而「科技支持學習(Learning with technology)」是以科技促進學生高階思考與意義學習的革新應用趨勢。因此,本研究以數學、科學與科技素養的評估指標為依據,發展電腦化數學、科學與科技的科際整合課程(Computerized MST Interdisciplinary Curricula, C-MST);並設計電腦化心智工具,提供學生建立領域知識與創造思考的系統性支持,以增進國小學生進行科際整合課程學習的可行性,此亦為C-MST與MST科際整合課程的主要區別。另外,C-MST結合科技教育的「設計與實作」活動,以激發學生概念應用、創意設計與實作技能的表現。研究以科技使用能力、創意設計能力與實作能力界定為學生科技素養;並以科技創造力測驗的結果來表徵學生流暢、變通、獨創、精進與視覺設計的創造力表現。
本研究以準實驗研究法,探究C-MST的整合效益對小六學生科技素養與科技創造力的影響。同時,以科技使用影響因素問卷的發展與調查,關注學生科技使用態度與意向和其科技使用的關聯。研究以5所學校共72位六年級學生為研究樣本,最後,有效樣本為48位。每校學生區分成「C-MST系統支持組」與「自我學習組」,進行10週的學習活動。「自我學習組」進行專題導向學習,提供網路資源與科技使用進行問題解決;「C-MST組」除進行意向性搜尋與社群討論的科技使用外,利用C-MST提供定錨課程,並以系統性心智工具支持學生概念與創意的連結。研究結果以階層線性模式(Hierarchical Linear Modeling, HLM)進行分析,評估學生三個時間點的科技素養與科技創造力的改變效益。研究結果顯示:(1)C-MST整合MST課程與科技為心智工具,能支持國小跨領域的科際整合課程學習;(2)C-MST科際整合課程,對增進國小學生科技素養與科技創造力,有顯著成長改變效益;(3)C-MST將課程設計、素養發展與評估指標的整合,使學生科技創造力的表現,顯著優於自我學習組與常模學生,顯示C-MST整合的有效性(4)學生科技素養與科技創造力有高度關聯,透過學習歷程中科技素養評估與回饋,以預期學生較佳的科技創造力表現;(5)科技使用態度與科技素養、科技創造力有顯著關聯,顯示出科技支持學習中需重視情意因素的影響。
本研究提出三項建議(1)C-MST科際整合課程除應重視素養與創造力的表現外,亦需關注學生情意傾向的正向改變;(2)對不同特質學生素養發展進行質化分析,以建構更具彈性的C-MST整合課程系統支持鷹架;(3)國小自然與生活科技課程的實施,建議以素養指標進行跨領域的課程整合,結合科技工具以提供系統性支持,進行長期的科際整合課程學習與效益評估。藉此,以數學與科學的領域與方法知識為基礎,彰顯自然與生活科技領域中生活科技的課程特質,發展科技素養與科技創造力。
Technological literacy and technological creativity are two keys to preparing elementary students for everyday life. This study developed Computerized MST Interdisciplinary Curricula(C-MST) while developing the technological literacy and creativity of pupils with C-MST. The main difference between C-MST and MST lies in computerized mindtools that are designed to assist students in learning with technology as well as for constructing anchored knowledge and systematic problem-solving strategies. C-MST is based on the literacy indicators of mathematics, science and technology, combines the activities of “designing and doing” in technological education, and inspires students to transfer mathematical and scientific concepts to creative designs and pragmatic performances.
This study adopted a quasi-experimental approach to assess the effects of C-MST on the performances of sixth-graders in terms of technological literacy and creativity. Seventy-two sixth-graders from five schools were divided between two groups, the “C-MST system-supported group” and the “self-learning group”. The experiment proceeded for ten weeks, with two main themes being carried out in 28 classes. The final effective sample comprised 48 students. With the “self-learning group” primarily focused on project-based learning, it was hoped that students would avail themselves of technological tools and internet resources to implement problem-solving strategies. On the other hand, the “C-MST group”, was provided with computerized anchored courses and systematic mindtools to assist the students in their critical and creative thinking.
The study yielded the following results. First, integration among elementary mathematics, science and technology courses can establish systematic support and connections between regular and project-based learning. Second, C-MST significantly enhances the technological literacy and creativity of elementary students. Third, by integrating the program design, literacy cultivation and assessment indicators, C-MST sees students in the C-MST system-supported group outperform those in the self-learning group in terms of technological literacy and technological creativity. Fourth, a significant correlation exists between student technological literacy and technological creativity. As a result, through literacy assessments and feedback gathered during the learning process, students are expected to exhibit improved technological creativity. Finally, a significant correlation exists between student technological application attitude and their technological literacy. This correlation demonstrates learning with technology should emphasize emotional factors.
This study thus made three suggestions. First, besides performances in technological literacy and creativity, C-MST should also pay attention to the positive development of student emotional propensity. Second, it is necessary to analyze different literacy developments among different students to enable the establishment of a more flexible C-MST Interdisciplinary Curricula scaffolding system. Finally, to proceed with elementary Science and Technology courses, it was recommended that technological literacy should be adopted as an indicator when coordinating interdisciplinary curricula programs. Such programs should combine technological tools and provide to enable a long-term assessment of technological interdisciplinary learning and its effects. This solid base of mathematical and scientific learning would distinguish the course features of Science and Technology, and enhance the development of the technological literacy and creativity of students.
表次…………………………………………………………………………... III
圖次…………………………………………………………………………... V
第一章 緒論……………………………………………………………… 1
第一節 研究背景與動機……………………………………………… 1
第二節 研究目的……………………………………………………… 6
第三節 名詞釋義……………………………………………………… 7
第四節 研究範圍與限制……………………………………………….. 10
第二章 文獻探討………………………………………………………… 13
第一節 MST科際整合課程…………………………………………... 13
第二節 C-MST科際整合課程與科技素養…………………………... 27
第三節 C-MST科際整合課程與科技創造力………………………... 42
第三章 研究方法…………………………………………………………. 53
第一節 研究架構……………………………………………………….. 53
第二節 研究假設……………………………………………………….. 55
第三節 研究設計……………………………………………………….. 56
第四節 研究工具……………………………………………………….. 64
第五節 資料處理與分析……………………………………………….. 94
第四章 研究結果與討論………………………………………………... 95
第一節 不同實驗處理學生「科技素養」差異比較…………………… 95
第二節 不同實驗處理學生「科技創造力」成長差異比較…………… 120
第三節 學生「情意因素」與「科技素養」及「科技創造力」的關聯分析 130
第四節 學生「科技素養」與「科技創造力」關聯分析………………. 134
第五章 結論與建議……………………………………………………… 139
第一節 結論…………………………………………………………….. 139
第二節 建議…………………………………………………………….. 146
參考文獻……………………………………………………………………. 148
一、中文部分…………………………………………………………… 148
二、英文部分……………………………………………………………. 150
附錄…………………………………………………………………………... 158
附錄一、科技使用行為影響因素(IFTB)專家效度問卷…………….. 158
附錄二、科技使用行為影響因素(IFTB)問卷……………………… 164
附錄三、科技使用行為影響因素(IFTB)與效標相關值摘要表…… 169
附錄四、意向性網路搜尋活動作業…………………………………….. 173
一、中文部分
王木榮、林幸台(1986)。威廉斯創造力測驗修定研究。師大特殊教育研究學刊,2,231-250。
王偉仲、黃湘婷、曾建勳(2001,6月)。電腦視覺化模擬情境在國小機率問題解決之輔助學習。載於國立中央大學舉辦之第五屆全球華人學習科技研討會(GCCCE2001)/第十屆國際電腦輔助教學研討會(ICCAI2001)論文集(頁479-486),新竹縣。
方德隆(譯)(2007)。R. Fisher, M. Williams著。開啟創造力之門:跨課程領域的教學(Unlocking Creativity: Teaching Across the Curriculum)。台北市:高等教育。
朱益賢(2006)。從科技素養到科技創造力。生活科技教育,39(8)。
沈中偉(2004)。科技與學習:理論與實務。台北市:心理。
余民寧(1999)。有意義的學習-概念構圖之研究。台北:商鼎文化。
吳明隆、林振欽(2005)。資訊科技與教學應用:議題、理論與實務。台北市:知城數位科技。
岳修平(譯)(1998)。E. D. Gagne’, C. W. Yekovich, & F. R. Yekovich著。教學心理學-學習的認知基礎。台北市:遠流。
吳思華、陳靜瑤(2005)。競爭力背後的創造力-以教育部顧問室「創造力教育中程發展計畫」為例談創造力教育。教育研究月刊,133,5-18。
李隆盛(1999a)。科技與職業教育的展望。台北市:師大書苑。
李隆盛(1999b)。科技與職業教育的跨越。台北市:師大書苑。
林紀慧(1999)。電腦超媒體學習環境與國小學科學習。教學科技與媒體,44,2-12。
林素微(2008)。臺灣學生數學素養的表現。載於林煥祥(主編),臺灣參加PISA 2006 成果報告(頁132-164)。花蓮巿:國立花蓮教育大學。
洪榮昭(1999,3月)。試析科技創作力。載於國立台東師範學院舉辦之國際科技教育整合思考研討會專題研討論文集(頁43-50)。台東縣。
教育部(2002):教育部創造力教育白皮書。台北市:教育部。
教育部(2008a):國民中小學九年一貫課程綱要總綱。台北市:教育部。
教育部(2008b):國民中小學九年一貫課程綱要自然與生活科技學習領域。台北市:教育部。
游光昭(1999)。從自然與生活科技領域看協同教學。生活科技教育,32(10)。
游光昭、林珍瑩(2001)。電腦網路與科技學習。生活科技教育,34(11),16-21。
陳文典(2003)。「創造能力」的探討。2008年8月10日,取自www.phy.ntnu.edu.tw/nstsc/。
陳君瑜(2006)。網路社群成員知識移轉與研發創新績效模式之研究。國立高雄師範大學工教系博士論文,未出版,高雄。
陳明溥、顏榮泉(2001,6月)。不同程度之學習支援對網路化問題導向學習之影響。載於國立中央大學舉辦之第五屆全球華人學習科技研討會(GCCCE2001)/第十屆國際電腦輔助教學研討會(ICCAI2001)論文集(頁548-554),新竹縣。
陳靜姿(2005)。數學學習氣質評量效度議題之探討。國立台南大學教育經營與管理研究所博士論文,未出版,台南。
張政亮(2001)。多媒體網路教學的發展趨勢~以模組式網頁教材的設計為例。2001資訊與教育雜誌特刊。教育部。
張春興(1996)。教育心理學:三化取向的理論與實踐(修訂版)。台北市:東華。
張基成(1997)。開發思考與創造力之知識建構工具與認知學習環境之探討:電腦的革新應用。教學科技與媒體,33,36-45。
張霄亭(譯)(2002)。R. Heinich等著。教學媒體與學習科技。台北市:雙葉書廊。
黃雲龍、郭佳育(譯)(2001)。K. E. Kendall著。新興的資訊科技。台北市:弘智文化。
曾國鴻、曾建勳、巫銘昌(2004)。文化不利地區國小教師實施生活科技MST取向教學之研究。高雄師大學報,16,453-472。
曾國鴻、曾建勳、廖居治(2004,11月)。文化不利地區初任教師資訊融入生活科技教學之行動研究。載於國立高雄師範大學舉辦之2004國際科技教育課程改革與發展研討會(頁132),高雄市。
葉玉珠(2000)。「創造力發展的生態系統模式」及其應用於科技與資訊領域之內涵分析。教育心理學報。32(1),1-28。
葉玉珠(2005a)。影響國小學童科技創意發展的因素之量表發展。師大學報。50(2),29-54。
葉玉珠(2005b)。科技創造力測驗-指導手冊。台北市:心理。
葉玉珠(2006)。創造力教學-過去、現在與未來。台北市:心理。
董素蘭(1999)。傳播新科技對社會的影響。傳播與社會。台北:揚智文化出版公司。
蔡錫濤(2001)。九年一貫生活科技課程的實踐。生活科技教育,34(10)。
謝清瑞(2001)。由傳播科技談教育科技發展的趨勢~以台灣國民教育為例。2001資訊與教育雜誌特刊,95-105。


二、英文部分
Adam, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use and usage of information technology. MIS Quarterly, 16(2), 227-247.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckman (Eds.), Action-control: From cognition to behavior (pp. 11-39). Heidelberg: Springer.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision process, 50(3), 179-211.
Ajzen, I. (2002). Constructing a TpB Questionnaire: Conceptual and Methodological Considerations. Retrieved May 8, 2007, from http://www-unix.oit.umass.edu
/~aizen/.
Alexander, S. (1995). Teaching and learning on the World Wide Web. [On line]. Retrieved June 16, 2001, from http://www.scu.edu.au/ausweb95/paper/
education2/alexander/.
Anderson, T. (1998). Integrating lectures and electronic course materials. Innovations in Education and Training International, 34(4), 24-31.
Anderson, S.J., Noyes & Garland, K. J. (1999). Evaluation of the Internet as a learning tool. Journal of Computer Assisted Learning, 15, 85-90.
Austin, J. D., Hirstein, J., & Walen, S. (1997). Integrated mathematics interfaced with science. School Science and Mathematics, 97(1), 45–49.
Bailin, S. (1994). Achieving extraordinary ends. Norwood, New Jersey: Ablex
Publishing Corporation.
Barab, S. A., & Landa, A. (1997). Designing effective interdisciplinary anchors. Educational Leadership, 54(6), 52–58.
Baker, E. L. (2007). Model-based assessments to support learning and accountability: The evolution of CRESST’s research on multiple-purpose measures. Educational assessment, 12(3&4), 179–194.
Barrows, H. S., & Tamblyn, R. M. (1980). Problem-based learning: An approach to medical education. NY: Springer.
Barrows, H. S. (1985). How to design a problem-based curriculum for the preclinical years. NY: Springer.
Blumenfeld, P. C. (1991).Motivating project-based learning: Sustaining the doing, support the learning. Educational Psychologist, 26(3&4), 369-398.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: brain, mind, experience and school. National Research Council, National Academy Press.
Bruer, J. (1993). Schools for thought: A science of learning in the classroom. Cambridge, MA: MIT Press.
Bybee, R.W. (2003). Fulfilling a promise: Standards for technological literacy. The Technology Teacher, 62(6), 23-26.
Childress, V. W. (1996). Does integrating technology, science, and mathematics improve technological problem solving? A quasi-experiment. Journal of Technology Education, 8(1), 16-26.
Clark, R. E. (1994). Media will never influence learning. Educational Technology Research and Development, 42(2), 21-30.
Cropley, A.J. (1997). Fostering creativity in the classroom: General principles.
In M. A. Runco (Ed.), Creativity Research Handbook. Cresskill, New Jersey: Hampton Press.
Csikszentmihalyi, M. (1996) Creativity: Flow and the psychology of discovery
and invention. New York: Harper-Collins Publishers.
Davis, F. D. (1989). Perceived usefulness, ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-339.
Diffily, D. (2002). Project-based learning: Meeting social studies standards and the needs of Gifted learners. ProQuest Education Journals, 25 (3), 40-59.
Doppelt, Y., Mehalik, M. M., Schunn, C. D., Silk, E. & Krysinski, D.(2008). Engagement and Achievements: A case study of design-based learning in a science context. Journal of Technology Education, 19(2), 22-39.
Duffy, T. M., Lowyck, J., & Jonassen, D. H. (1993). Designing environment for constructive learning. Berlin: Springerp-Verlag.
Duke, J. M. (2003). A web-based interface for student peer review, problem-based learning, and peer pressure. Journal of Natural Resources and Life Sciences Education, 32, 52-56.
Dunlap, J. C.(2005) Problem-based learning and self-efficacy: how a capstone course prepares students for a profression. Educational Technology, Research and Development, 53(1), 65-85.
Dwyer, D. C., Ringstaff, C., & Sandholtz, J. H. (1991). Changes in teachers’ beliefs and practices in technology-rich classroom. Educational Leadership, 48, 45-52.
Esche, S. K. (2002). Project-Based Learning (PBL) in a course on mechanisms and machine dynamics. World Transactions on Engineering and Technology Education, 1(2), 201-204.
Flowers, J. (2001). Online Learning Needs in Technology Education. Journal of Technology Education, 13(1), 17-30.
Foster, P. (1994). Must we MST? Journal of Technology Education, 6(1), 76-84.
Foster, W. T. (1995). Integrating educational disciplines. The Technology Teacher, 54(8), 45.
Franke, N., & Shan, S. (2003). How communities support innovative activities: An exploration of assistance and sharing among end-users. Research Policy, 32(1), 157-178.
Gardner, H. (1997). Extraordinary Minds. NY: Basic Books.
Gibson, I. W. (2001). At the intersection of technology and pedagogy: Considering styles of learning and teaching. Journal of Information Technology for Teacher Education, 10(1&2), 37-61.
Gijbels, D., Dochy, F., den Bossche, P. V., & Segers, M. (2005). Effects of problem-based learning: A meta-analysis from the angle of assessment. Review of Education Research, 75(1), 27-61.
Harbach, B. (2003). Creativity and the emerging technologies. In Proceedings of World Conference on E-learning in Corporate, Government, Healthcare, and Higher Education, 1006-1008. Chesapeake, VA: AACE.
Helle, L., Tynjala P., & Olkinuora E. (2006). Project-based learning in post-secondary education - theory, practice and rubber sling shots. Higher Education, 51: 287–314.
Henry, L. A. (2006). SEARCHing for an answer: The critical role of new literacies while reading on the Internet. The Reading Teacher.
Hodkinson, H., & Hodkinson, P. (2005). Improve schoolteachers’ workplace learning. Research Papers in Education, 20(2), 109-131.
Hung, P. H.(洪碧霞), Chen, C. Y.(陳君瑜), Tseng, C. H.(曾建勳)(2008). Efficacy in technology:The integration way of intervene spreadsheet in elementary algebraic activities. International Group for the Psychology of Mathematics Education (PME32).
ITEA (International Technology Education Association, Technology for All Americans Project). (1996). Technology for all Americans: A rationale and structure for the study of technology. Reston, VA: Author
ITEA (International Technology Education Association, Technology for All Americans Project). (2000). Standards for technological literacy: Content for the study of technology. Reston, VA: Author.
ITEA (International Technology Education Association, Technology for All Americans Project). (2003). Advancing excellence in technological literacy: Student assessment, professional development, and program standards. Reston, VA: Author.
Jacobs, H. H. (Ed.). (1989). Interdisciplinary curriculum: Design and implementation. Alexandria, VA: Association for Supervision and Curriculum Development.
Johnson, A., Charner, I., & White, R. (2003). Curriculum integration in context: An exploration of how structures and circumstances affect design and implementation. St. Paul, MN: National Research Center for Career and Technical Education, University of Minnesota.
Jonassen, D. H. (1996). Computers in Classroom: Mindtools for critical thinking. Englewood Cliffs, NJ: Prentice-Hall, Inc.
Jonassen, D. H., Peck, K. L., & Wilson, B. C.(1999). Learning with technology: A constructivist perspective. Upper Saddle River, NJ: Prentice-Hall.
Jonassen, D. H. (2000). Computers as Mindtools for schools:Engaging Critical Thinking. Upper Saddle River, NJ: Prentice-Hall.
Jonassen, D. H., Howland, J., Moore J., & Marra, R. M. (2003). Learning to solve problems with technology: A constructivist perspective (2nd ed.). Upper Saddle River, NJ: Pearson Education.
Jonassen, D. H. (2004). Learning to solve problems: An instructional design guide. San Francisco, CA: Pfeiffer.
Jonassen, D. H., & Strobel, J. (2006). Modeling for meaningful learning. In Engaged learning with emerging technologies (pp. 1-29). Netherlands, Springer.
Kain, D. L. (1993). Cabbages and kings: Research directions in integrated /interdisciplinary curriculum. The Journal of Educational Thought, 27(3), 312–331.
Kapur, S. & Stillman, G.. (1997). Teaching and learning using the World Wide Web: A case study. Innovations in Education and Training International, 34(4), 316-322.
Kearsley, G. (1996). The World Web: Global access to education. Educational Technology Review, 5, 26-30.
Kellough, R. D. (1996). Integrating mathematics and science for intermediate and middle school students. NJ: Prentice-Hall, Inc.
Khalil, T. M. (2000). Management of technology: The key to competitiveness and wealth creation. Singapore: McGraw-Hill.
Khan, B. (1997). Web-based instruction. Englewood Cliffs, NJ: Educational Technology Publications.
Kirk, M. & Filho, C. (2005, September). Cognitive and metacognitive implications of project-based learning: Educating for responsible citizenship. In Proceedings of the Annual Conference of Global Poject Based Learning Forum and Exhibition, Kaoshung.
Koch, J.& Burghardt, M. D. (2002). Design technology in the elementary school—A study of teacher action research. Journal of Technology Education, 13(1), 17-30. Journal of Technology Education, 13(2), 21-33.
Kraemer, L., Danziger, J. N., Dunkle, D. E., & King, J. L. (1993). The usefulness of computer-based information to public managers. MIS Quarterly, 17(2), 129-148.
Lambros, A. (2002). Problem-based learning in K-8 classrooms: A teacher’s guide to implementation. NY: Corwin Press.
LaPorte, J. E., & Sanders, M. E. (1995a). Integrating technology, science, and
mathematics education. In G. E. Martin (Ed.), Foundations of technology
education: Forty-fourth yearbook of the Council on Technology Teacher
Education (pp. 179-219). Lake Forest, IL: Glencoe.
LaPorte, J. E., & Sanders, M. E. (1995b). Technology, science, mathematics connection activities. Lake Forest, IL: Glencoe.
Lee, M., & Kim, D. S. (2005). The effects of the collaborative representation supporting tool on problem-solving processes and outcomes in web-based collaborative problem-based learning(PBL) environments. Jouranl of Interactive Learning Research, 16, 273-293.
Lee, C. I. & Tsai, F. Y. (2004). Internet project-based learning environment: the effects of thinking styles on learning transfer. Journal of Computer Assisted Learning, 20, 31–39
Lewis, T. (2005). Creativity-A framework for the design/problem solving discourse in technology education. Journal of Technology Education, 17(1), 35-52.
Loepp, F. L. (1999). Models of curriculum integration. Journal of Technology Studies, 25(2), 21-25.
MacDonald, D. & Gustafson, B. (2004). The role of design drawing among children engaged in a parachute building activity. Journal of Technology Education, 16(1), 55-71.
Markus, M. L. (1994). Electronic mail as medium of managerial choice. Qrganization Science, 5(4), 502-527.
Mason, D., Mittag, K. C., & Taylor, S. E. (2003). Integrating mathematics, science, and technology: A skill-building approach. Boston, MA.
Mawson, B. (2003). Beyond ‘The Design Process”: An Alternative Pedagogy for Technology Education. International Journal of Technology and Design Education, 13(2), 117-128.
Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of Educational Research, 31, 611-623
McRobbie, C. J., Stein, S. J., & Ginns, I. (2001). Exploring Designerly Thinking
of Students as Novice Designers. Research in Science Education, 31(1), 91-116.
Merrill, C. (2001). Integrated technology, mathematics, and science education: A quasi-experiment. Journal of Industrial Teacher Education, 38 (3), 45-61.
Michael, K. Y. (2001). The Effect of a Computer Simulation Activity versus a
Hands-on Activity on Product Creativity in Technology Education. Journal of Technology Education, 13(1), 31-43.
Morgan, A. (1983). Theoretical aspects of project-based learning in higher education, British Journal of Educational Technology, 1, 66–78.
Newhouse, P., & Rennie, L. (2001). A longitudinal study of the use of student-owned portable computers in a secondary school. Computers & Education, 36, 223-243.
Nickerson, R. S. (1999). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity. Cambridge: Cambridge University press.
OECD (2005). The definition and selection of key competencies executive summary. Retrieved July 10, 2008, from http://www.oecd.org/dataoecd/47/61/35070367.pdf
OECD (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. OECD, Paris.
Pannabecker, J. R. (2002). Integrating technology, science, and math at Napoleon’s school for industry, 1806-1815. Journal of Technology Education, 14(1), 51-64.
Parkinson, E. (2001). Teacher knowledge and understanding of design and
technology for children in 3-11 age group: A study focusing on aspects of
structures. Journal of Technology Education, 13(1), 44-58.
Polman, J. L. (2004). Dialogic activity structures for project-based learning environments. Cognition and Instruction, 22(4), 431–466.
Renzulli, J.(2005). Intelligence outside the normal curve: Factors that contribute the creation of social capital in young people and adults. Keynote speech presented at 16th WCGTC Biennial World Conference, New Orleans, U.S.
Rice, R. E. (1993). Media appropriateness: Using social presence theory to compare traditional and new organizational media. Human Communication Research, 19(4), 451-484.
Robinson, K. (2001). Out of our minds: learning to be creative. Oxford: Capstone.
Rose, M. A. (2007). Perceptions of technological literacy among science, technology, engineering, and mathematics leaders. Journal of Technology Education, 19(1), 35-52.
Sandholtz, J. H. & Reilly, B. (2004). Teachers, not technicians: Rethinking technical expectations for teachers. Teachers College Record, 106, 487-512.
Schaber, P. L. (2005). Incorporating problem-based learning and video technology in teaching group process in an occupational therapy curriculum. Journal of Allied Health, 34(2), 110-116.
Schneider, A. (1998). Sociology- The Internet as an extended classroom. Social Science Computer Review, 16(1), 53-57.
Sherry, L. (1998). The nature and purpose of online discourse : A brief synthesis of current research as related to the WEB project. Retrieved from June, 2005 http://www.cudenver.edu/~lsherry/pubs/dialogue.htm.
Shum, S.B., & McKnight, C. (1997). Sociology- The Internet as an Extended classroom. Social Science Computer Review, 16(1), 53-57
Siraj, S. (2005, September). Project-based Learning (PrBL): for curriculum enrichment: Malaysia experiences. In Proceedings of the Annual Conference of Global Poject Based Learning Forum and Exhibition, Kaoshung.
Sloane, A. (1997). Learning with the Web: Experience of using the World Wide Web in a learning environment. Computer & Education, 28(4), 207-212.
Solomon, G. (2003). Project-based learning: a prime. Technology & Learning, 23(6), 20-26.
Sternberg, R. J. & Lubart T.I. (1995).Defying the crowd: Cultivating creativity in a Culture of conformity. NY: Free Press.
Tardif, T. Z. & Sternberg, R. J. (1988). What do we know about creativity? In
R. J. Sternberg (Ed), The nature of creativity: contemporary psychological
perspectives (pp.429-440). Cambridge: Cambridge University Press.
Taylor, J. S. (2006). Student perceptions of selected technology student association activities. Journal of Technology Education, 17(2), 56-71.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing model. Information Systems Research, 6(2), 144-176.
Torrance, E. P. (1974). Torrance test of creative thinking. Lexington, MA: Ginn.
Tseng, C. H.(曾建勳)(2004). Pupils' using of multimedia advance organizers and learning retention. The 7th IASTED International Conference on Computers in Education (CATE 2004) and Advanced Technology, 50-53.
Tseng, K. H.(曾國鴻),Chen, C. Y.(陳君瑜), Tseng, C. H.(曾建勳),Liao, C.C.(廖居治)(2006). Using computers as mindtools to influence pupils’ cognitive flexibility. WSEAS Transactions on Computers, 5(5), 893-898
Vars, G. F. (1991). Integrated curriculum in historical perspective. Educational Leadership, 49(2), 14–15.
Venkatesh, V. (2000). Determinants of perceived eased of use: Integration control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365.
Verhovsek, E., & Striplin, T. (2003). Problem based learning: Applications for college mathematics and allied health. Mathematics and Computer Education; 37(3), 381-387.
Verkasalo, M., & Lappalainen, P. (1998). A method of measuring the efficiency of the knowledge utilization process. IEEE Transactions on Engineering Management, 45(4), 414-423.
Warner, S.A. (2003). Teaching design: Taking the first steps. The Technology Teacher, 62(4), 7-10
Wang, W. C.(王偉仲), Tseng, C. H.(曾建勳), & Huang, S. T.(黃湘婷)(2001). Using subsumption theory based computer mindtools to assist pupils in constructing probability concept. International Conference on Computers in Education ( ICCE 2001), 106-113.
Weiss, I. R., Knapp, M. S., Hollweg, K. S.& Burrill, G. (2002). Investigating the influence of standards: A framework for research in mathematics, science, and technology education.Washington, DC: National Academy Press.
Weymer, R. A. (2002). Factors affecting students' performance in sixth Grade modular technology education. Journal of Technology Education, 13(2), 34-47.
Windschitl, M., & Sahl, K. (2002). Tracing teachers’ use of technology in a laptop computer school: The interplay of teacher beliefs, social dynamics, and institutional culture. American Educational Research Journal, 39, 165-205.
Woolley, S., & Ludwig-Hardman, S. (2000). Online learning communities: Vehicles for collaboration and learning in online learning environments. World Conference on Educational Multimedia, Hypermedia and Telecommunication, 2000(1), 1556-1558.
Zbiek, R. M., Heid, M. K., Blume G. W., & Dick, T. (2007). Research on technology in mathematics education:A perspective of constructs.
Zubrowski, B. (2002). Integrating science into design technology projects: Using
a standard model in the design process. Journal of Technology Education, 13(2), 48-67.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔