(54.236.58.220) 您好!臺灣時間:2021/03/09 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔣季翰
研究生(外文):Chi-Han Chiang
論文名稱:不同草帶組成對攔砂特性與水理影響之研究
論文名稱(外文):Sediment trapping and hydraulic characteristics affected by different grass strip configurations
指導教授:吳嘉俊
指導教授(外文):Dr.C.-C. Wu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水土保持系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:128
中文關鍵詞:草帶草籬出砂時間植生緩衝帶土砂攔阻效益
外文關鍵詞:Grass stripHedge grassSediment runout timeVegetative buffer stripSediment trapping efficiency
相關次數:
  • 被引用被引用:3
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
台灣地勢陡峭,土地開發利用隨著人口密度的增加而逐漸提高,人為開發成為污染集水區環境及水源不可否認的因素之一,而植生保護帶即為消減污染源及提供生態棲息地的方法,然而台灣對於植生保護帶的設置相關研究不足,無法提供設計的參考。
因此本研究使用大型渠槽,以活植株進行草帶水工試驗,分別採用不同草帶寬度、坡度、草類、土砂粒徑、入流流量以及不同草籬配置方式,以探討草帶於不同試驗條件中的土砂攔阻功能及相關水理與淤砂特性。由試驗探討得以下結論:
草帶內土砂的堆積受到不同性狀草類影響甚劇,隨著草帶寬度的增寬,土砂暫存的空間亦隨之提高。試驗中發現,隨著時間推進,土砂堆積於草帶內時不斷地改變地表糙度。草籬的存在,提早造成逕流集中及沖蝕溝。當沖蝕溝發生時,隨著草籬數量的增加則有逐漸降低土砂攔阻的功效。流量及坡度的增加,使草帶攔阻土砂的功能明顯降低。於坡度9 %時,草籬的存在,提供暫存土砂空間的作用,但當坡度於15 %及20 %時,草籬導致逕流集中,降低草帶原有的攔阻土砂功能。

Steep topography and rapid development has made all activities associated with human one of the key components contaminating watershed environment as well as degrading water quality. Researches have demonstrated that vegetative buffer strip is one of the countermeasures that capable of controlling the movement of pollutant. Vegetative buffer strip is also capable of creating and maintaining wildlife habitats. Nevertheless, lack of research support, implementation guidelines of vegetative buffer strip are needed for Taiwan; especially on steep topography and limited land areas.
Hence grass strip experiments were conducted in a hydraulic flume. Experiment parameters included strip width, slope steepness, grass species, sediment size, inflow rate, and two configurations of hedge grass. And the objective of this study was to investigate how different grass configurations affecting sediment trapping efficiency and hydraulic characteristics within a grass strip. Following conclusion can be drawn from this study:
Sediment trapping efficiency is found to be greatly affected by grass configurations. It is also affected by the strip width. As strip width increases, sediment trapping efficiency increases accordingly within the limits of experiment conditions. Experiment observations as well as flow velocity measurements also notice the continuous changes of surface roughness that alter not only the sediment runout time but also sediment discharge. Flume experiments were not in favor of implementing hedge rows on steep slopes; simply because hedge rows promote flow concentration that in turn help initiate rills and shorten sediment runout time. Increases in flow rate and slope steepness obviously decreases sediment trapping efficiency. At 9 % slope, the hedge rows provide additional sediment storage space; however, runoff concentration and rill erosion diminishes the storage space and decreases sediment trapping efficiency when slope steepness increases to 15 and 20%.

V
目 錄
摘 要................................................................................................................I
Abstract ............................................................................................................ II
謝 誌.............................................................................................................IV
目 錄.............................................................................................................. V
表目錄.......................................................................................................... VIII
圖目錄.............................................................................................................IX
照片目錄......................................................................................................XIV
1.前言................................................................................................................ 1
2.文獻回顧........................................................................................................ 2
2.1 植生過濾帶之意涵................................................................................. 3
2.2 植生過濾帶國內外相關法規之規定..................................................... 4
2.3 植生過濾帶之效益及相關研究............................................................. 6
2.4 植生過濾帶寬度對化學污染源之過濾................................................. 9
2.4.1 農藥過濾.......................................................................................... 9
2.4.2 植生過濾帶寬度配置之相關研究................................................ 11
2.5 草帶的效益........................................................................................... 17
3.試驗設備、材料與方法.............................................................................. 19
VI
3.1 試驗渠槽規格及試驗佈置................................................................... 19
3.2 供試草類及草帶模擬設置................................................................... 22
3.2.1 供試草類介紹................................................................................. 22
3.2.2 匍匐性草帶模擬設置.................................................................... 25
3.2.3 匍匐性草帶搭配直立性草類之設置............................................. 29
3.3 水工試驗參數....................................................................................... 35
3.4 供試土砂材料及加砂方法................................................................... 36
3.5 水深及淤砂量測................................................................................... 40
3.5.1 水深之量測.................................................................................... 40
3.5.2 淤砂量測........................................................................................ 40
3.5.3 流速量測......................................................................................... 42
3.6 試驗流量之量測與設定....................................................................... 43
3.7 加砂量設計及攔砂率計算................................................................... 44
3.7.1 加砂量設計..................................................................................... 44
3.7.2 加砂步驟........................................................................................ 44
3.7.3 出砂取樣與攔砂率計算................................................................ 44
3.8 出砂時間之推估................................................................................... 48
4.結果與討論.................................................................................................. 49
4.1 由草帶內之淤砂變化探討百喜草草帶帶寬之影響........................... 50
VII
4.2 由草帶內之水理變化探討對不同土砂粒徑之影響........................... 57
4.3 由草帶內之水理變化探討類地毯草草帶帶寬之影響....................... 60
4.4 草帶內土砂堆積前進與出砂延時之探討........................................... 67
4.4.1 草帶內土砂堆積之前進................................................................ 67
4.4.2 草帶與出砂延時之探討................................................................ 72
4.5 匍匐性草帶攔砂率之探討................................................................... 78
4.6 百喜草草帶配置單排草籬後之水理及攔砂率探討........................... 84
4.7 百喜草草帶配置雙排草籬後之水理及攔砂率探討........................... 92
5.結論與建議................................................................................................ 111
參考文獻....................................................................................................... 113
附 錄........................................................................................................... 117
作者簡介....................................................................................................... 128
VIII
表目錄
表2-1 美國、加拿大各個管轄區所需保護帶之寬度.................................. 5
表2-2 植生過濾帶對泥砂與總磷傳輸之影響.............................................. 8
表2-3 溪流濱水緩衝帶功能表.................................................................... 13
表3-1 匍匐性草帶之水工試驗參數表........................................................ 35
表3-2 百喜草帶添加直立性草配置之水工試驗參數表............................ 35
表3-3 碳化矽物理成分表............................................................................ 37
表4-1 坡度15 %百喜草草帶不同寬度及流量出砂時間計算表............... 73
表4-2 百喜草草帶於坡度20 %時不同帶寬及粒徑之出砂時間比較....... 75
表4-3 帶寬4.5 m 百喜草草帶不同粒徑之出砂時間................................. 89
表4-4 配置單排草籬百喜草草帶不同粒徑之出砂時間............................ 90
IX
圖目錄
圖2-1 理想緩衝綠帶構築示意圖.................................................................. 2
圖2-2 美國農業部國家農林中心-濱水緩衝帶設置示意圖....................... 12
圖2-3 多種類岸邊的緩衝帶系統示意圖.................................................... 15
圖2-4 典型n-VR Curve .............................................................................. 18
圖3-1 草帶於大型渠槽內配置示意圖........................................................ 20
圖3-2 百喜草草帶植株扦插示意圖............................................................ 25
圖3-3 天竺草叢株直徑之適當分級數目區間圖........................................ 31
圖3-4 渠槽內百喜草草帶搭配單排天竺草之示意圖................................ 33
圖3-5 渠槽內百喜草草帶搭配雙排天竺草之示意圖................................ 34
圖3-6 由累積出砂歷線估算出砂時間........................................................ 48
圖4-1 試驗結果討論流程圖........................................................................ 49
圖4-2 百喜草草帶淤砂變化L=3m,S=15%,D50=566μm,
q=2.1×10-3 m3/m-s .............................................................................. 50
圖4-3 百喜草草帶淤砂變化L=4.5m,S=15%,D50=566μm,
q=2.1×10-3 m3/m-s .............................................................................. 51
圖4-4 百喜草草帶淤砂變化L=6m,S=15%,D50=566μm,
q=2.1×10-3 m3/m-s .............................................................................. 51
圖4-5 百喜草草帶內淤砂變化L=3m,S=20%,D50=566μm,
q=2.1×10-3 m3/m-s .............................................................................. 54
X
圖 4-6 百喜草帶內淤砂變化L=4.5m,S=20%,D50=566μm,
q=2.1×10-3m3/m-s .............................................................................. 54
圖4-7 百喜草草帶內淤砂變化L=6m,S=20%,D50=566μm,
q=2.1×10-3 m3/m-s ............................................................................. 55
圖4-8 百喜草草帶內之水理變化L=6m,S=9%,D50=726μm,
q=4.7×10-3 m3/m-s.............................................................................. 57
圖4-9 百喜草草帶內之水理變化L=6m,S=9%,D50=566μm,
q=4.7×10-3 m3/m-s.............................................................................. 57
圖4-10 百喜草草帶內之水理變化L=6m,S=15%,D50=726μm,
q=4.7×10-3 m3/m-s.............................................................................. 58
圖4-11 百喜草草帶內之水理變化L=6m,S=15%,D50=566μm,
q=4.7×10-3 m3/m-s.............................................................................. 58
圖4-12 類地毯草草帶內之水理變化L=3m,S=15%,D50=726μm,
q=2.1×10-3m3/m-s .............................................................................. 60
圖4-13 類地毯草草帶內之水理變化L=4.5m,S=15%,D50=726μm,
q=2.1×10-3m3/m-s.............................................................................. 61
圖4-14 類地毯草草帶內之水理變化L=6m,S=15%,D50=726μm,
q=2.1×10-3m3/m-s.............................................................................. 61
圖4-15 百喜草草帶內之水理變化L=4.5m,S=9%,D50=726μm,
q=2.1×10-3m3/m-s .............................................................................. 63
圖4-16 類地毯草草帶內之水理變化L=4.5m,S=9%,D50=726μm,
q=2.1×10-3m3/m-s .............................................................................. 64
圖4-17 類地毯草帶水理變化L=3m,S=9%,D50=726μm,
q=4.7×10-3m3/m-s .............................................................................. 68
XI
圖 4-18 類地毯草草帶水理變化L=4.5m,S=9%,D50=726μm,
q=4.7×10-3m3/m-s ............................................................................. 68
圖4-19 類地毯草帶水理變化L=6m,S=9%,D50=726μm,
q=4.7×10-3m3/m-s.............................................................................. 69
圖4-20 坡度15 %不同帶寬、流量時,百喜草草帶出砂歷線比較......... 72
圖4-21 坡度20 %不同帶寬時D50 為566 μm 之百喜草草帶
出砂歷線比較.................................................................................. 74
圖4-22 坡度20 %不同帶寬時D50 為726 μm 之百喜草草帶
出砂歷線比較.................................................................................. 74
圖4-23 坡度9 %百喜草草帶之攔砂率比較............................................... 78
圖4-24 坡度9 %類地毯草草帶之攔砂率比較........................................... 78
圖4-25 坡度15%百喜草草帶之攔砂率比較.............................................. 80
圖4-26 坡度15%類地毯草草帶之攔砂率比較.......................................... 80
圖4-27 坡度20% 百喜草草帶之攔砂率比較............................................ 82
圖4-28 坡度20% 類地毯草草帶之攔砂率比較........................................ 82
圖4-29 百喜草草帶內之水理變化S=9%,D50=726μm,
q=2.1×10-3m3/m-s............................................................................. 84
圖4-30 單排草籬百喜草草帶內之水理變化S=9%,D50=726μm,
q=2.1×10-3m3/m-s ............................................................................. 85
圖4-31 百喜草草帶內之水理變化S=9%,D50=726μm,
q=4.7×10-3m3/m-s ............................................................................. 86
XII
圖 4-32 單排草籬百喜草草帶內之水理變化S=9%,D50=726μm,
q=4.7×10-3m3/m-s ............................................................................. 86
圖4-33 單排直立草籬之百喜草草帶試驗後土砂堆積情形...................... 88
圖4-34 無配置直立草籬之百喜草草帶試驗後土砂堆積情形.................. 88
圖4-35 坡度9 %不同草籬配置之攔砂率比較圖....................................... 92
圖4-36 坡度15 %不同草籬配置之攔砂率比較圖..................................... 92
圖4-37 坡度20 %不同草籬配置之攔砂率比較圖..................................... 93
圖4-38 雙排草籬百喜草草帶內之水理變化,S=15%,D50=726μm,
q=4.7×10-3m3/m-s............................................................................. 96
圖4-39 單排草籬百喜草草帶內之水理變化S=15%,D50=726μm,
q=2.1×10-3m3/m-s............................................................................. 96
圖4-40 百喜草草帶內之水理變化S=15%,D50=726μm,
q=2.1×10-3m3/m-s............................................................................. 97
圖4-41 雙排草籬百喜草草帶內之水理變化S=15%,D50=566μm,
q=2.1×10-3m3/m-s............................................................................. 97
圖4-42 單排草籬百喜草草帶內之水理變化S=15%,D50=566μm,
q=2.1×10-3m3/m-s ............................................................................ 98
圖4-43 百喜草草帶內之水理變化S=15%,D50=566μm,
q=2.1×10-3m3/m-s ............................................................................ 98
圖4-44 坡度15 %單、雙排草籬配置對726 μm 土砂攔阻堆積
數化情形........................................................................................ 100
圖4-45 坡度15 %單、雙排草籬配置對566 μm 土砂攔阻堆積
數化情形........................................................................................ 100
XIII
圖 4-46 雙排草籬百喜草草帶內之水理變化S=20%,D50=726μm,
q=2.1×10-3m3/m-s .......................................................................... 102
圖4-47 單排草籬百喜草草帶內之水理變化S=20%,D50=726μm,
q=2.1×10-3m3/m-s .......................................................................... 102
圖4-48 坡度20 %單、雙排草籬配置對726 μm 土砂攔阻
堆積數化情形................................................................................ 103
圖4-49 坡度20 %單、雙排草籬配置對566 μm 土砂攔阻
堆積數化情形................................................................................ 103
圖4-50 雙排草籬百喜草草帶內之水理變化S=15%,D50=566μm,
q=4.7×10-3m3/m-s .......................................................................... 105
圖4-51 單排草籬百喜草草帶內水理變化S=15%,D50=566μm,
q=4.7×10-3m3/m-s .......................................................................... 105
圖4-52 坡度15 %不同草籬、流量對566μm 土砂之出砂歷線比較...... 107
圖4-53 坡度15 %不同草籬、流量對726μm 土砂之出砂歷線比較...... 107
圖4-54 坡度20 %不同草籬、流量對566μm 土砂之出砂歷線比較...... 109
圖4-55 坡度20 %不同草籬、流量對726μm 土砂之出砂歷線比較...... 109
XIV
照片目錄
照片2-1 濱水緩衝帶設置前(1990)與設置後(1994)之比較........................ 15
照片3-1 陡坡水工實驗室之大型渠槽外觀以及不鏽鋼板分隔情形......... 19
照片3-2 木製假底板鋪設於渠槽內之情形................................................. 21
照片3-3 渠槽下游暫時接存出流土砂之水箱............................................. 21
照片3-4 試驗草種-百喜草............................................................................ 23
照片3-5 試驗草種-類地毯草........................................................................ 24
照片3-6 試驗草種-天竺草............................................................................ 24
照片3-7 百喜草扦插於植栽盒之情形......................................................... 25
照片3-8 國立屏東科技大學緩坡地試驗區百喜草生長近照..................... 26
照片3-9 大葉百喜草扦插後移至渠槽內之情形......................................... 26
照片3-10 渠槽內鋪植類地毯草草帶之情形............................................... 27
照片3-11 以#14 鐵絲錨定類地毯草草皮之情形...................................... 28
照片3-12 天竺草天然的垂直叢生於坡面之情形....................................... 29
照片3-13 土壤沖蝕試驗區內量測天竺草叢生株徑之情形....................... 30
照片3-14 於渠槽內以石膏灌製穩定天竺草基部之情形........................... 32
照片3-15 渠槽內百喜草帶搭配單排天竺草之情形................................... 32
照片3-16 渠槽內百喜草草帶搭配雙排天竺草之情形............................... 33
照片3-17 粒徑1000 μm 之碳化矽............................................................... 36
XV
照片 3-18 粒徑500 μm 之碳化矽................................................................. 36
照片3-19 粒徑200 μm 之碳化矽................................................................. 36
照片3-20 粒徑70 μm 之碳化矽................................................................... 36
照片3-21 將土砂依照體積換算成重量配比之秤重情形........................... 38
照片3-22 將秤重後之土砂倒入攪拌機混合均勻....................................... 38
照片3-23 大型搖篩機篩砂過程................................................................... 39
照片3-24 電子水位尺量測水深變化之情形............................................... 41
照片3-25 試驗中利用紅外線測距儀量測淤砂變化之情形....................... 41
照片3-26 試驗中施放染料量測流速之情形............................................... 42
照片3-27 試驗中使用搖篩器加砂之情形................................................... 45
照片3-28 渠槽下游承接出流水及土砂樣本............................................... 45
照片3-29 將桶內多餘水分吸出................................................................... 46
照片3-30 使用洗滌瓶將土砂樣本洗入紙杯............................................... 46
照片4-1 草帶前緣土砂受攔阻之情形......................................................... 53
照片4-2 百喜草草帶前緣土砂之攔阻及迴水現象..................................... 65
照片4-3 類地毯草草帶前緣土砂之攔阻及迴水現象................................. 65
照片4-4 類地毯草草帶寬度3 m 之土砂堆積情形..................................... 70
照片4-5 類地毯草草帶寬度6 m 之土砂堆積情形..................................... 70
照片4-6 土砂由草帶內流出時之情形......................................................... 77
XVI
照片 4-4 染料流經過草籬後水流集中流動之情形..................................... 87
照片4-5 草帶內配置草籬上游造成向源沖蝕現象..................................... 91
照片4-6 草帶內配置草籬下游造成蝕溝之情形......................................... 91
參考文獻
1. 水土保持技術規範,2003,行政院農業委員會水土保持局編制。第10頁。
2. 水土保持植物簡介-禾草篇 行政院農業委員會。
3. 王小燕,1997,阿公店水庫集水區緩衝帶配置之研究,碩士論文,國立中興大學,水土保持研究所,台中。
4. 吳嘉俊,2006,緩衝綠帶帶寬與適用植物之研究(第二年)成果報告,國立屏東科技大學,水土保持系,屏東。
5. 林杰熙、黃宏斌,1994,「排列密度隊阻力係數之影響探討」。臺灣河川水利,第42卷,第3期,第22-30頁。
6. 林昭遠,1998,「濱水區植生緩衝帶配置之研究」。中華水土保持學報,第29卷,第3期,第291-272頁。
7. 范正成、王心芝、張尊國、鄭克聲,1996,「部分最佳管理作業對農業用地非點源汙染控制之功能」,第九屆環境規劃與管理研討會,第67-71頁。
8. 夏禹九、黃正良、王立志、黃良鑫,1990,「林道緩衝帶的適當寬度」,林業試驗所研究報告季刊,第5卷,第3期,第201-208頁。
9. 莊佳慧,1998,指標模式應用於植生緩衝帶寬度之研究,碩士論文,國立中興大學,水土保持研究所,台中。
10. 陳光政,2003,大埔水庫集水區濱水區植生緩衝帶配置效益之研究,碩士論文,國立中興大學,水土保持所,台中。
11. 陳彥璋,2006,水庫保護帶實施策略規劃,國立台北科技大學,環境資源中心。
12. 陳彥璋、林鎮洋、楊翰宗、高蘇白、詹又寧,2007,「草溝阻滯係數之推估」,2007年第十六屆水利工程研討會,第134-141頁。
13. 陳連興,1988,德基水庫邊坡果園區及周緣林帶中營養鹽之動態研究,碩士論文,台灣大學,農業化學研究所,台北。
14. 陳尊賢、劉禎祺,1996,「河岸森林緩衝帶對水庫鄰近果園養分之截取作用-以台灣二水庫為例」,河川溪流水庫保護帶研討會論文集,第24-71頁。
15. 韓孟志,2004,河岸土地使用與植生緩衝帶特性對水質影響之研究-以七家灣溪濱水區為例,碩士論文,中國文化大學,景觀學系研究所,台北。
16. Abu-Zreig, M., Rudra, R.P., Whitely, H.R., Lalonde, M.N., and Kaushik, N.K., 2003, “Phosphorus removal in vegetated filter strips,”Journal of Environmental Quality, Vol.32,pp 613-619.
17. Arora, K., Mickelson, S.K., Baker, J.L., Tierney, D.P., and Peters, C.J., 1996, “Herbicide retention by vegetative buffer strips from runoff under natural rainfall,” Transactions of the ASAE, Vol. 39, pp. 2155-2162.
18. Belt, G. H., O'Laughlin, J. and Merrill, T., 1992, “Design of forest riparian buffer strips for the Protection of Water Quality: Analysis of Scientific Literature. Forest Wildlife and Range Policy Analysis Group, Idaho.
19. Bren, L. J., 1998, “The geometry of a constant buffer-loading design method for humid watersheds,” Forest Ecology and Management Vol. 110, pp. 113-125.
20. Dabney. S.M, Meyer L.D, Harmon W.C., Alonso C.V., Foster G. R., 1995, “Depositional patterns of sediment trapped by grass hedges,” Transactions of the ASAE, Vol. 38,No. 2, pp. 1719-1729.
21. Dhondt, K., Boeckx, P., van Cleemput, O., Hofman, G., and Detroch, F., 2002, “Seasonal groundwater nitrate dynamics in a riparian buffer zone,” Agronomie. Vol. 22 pp. 747-753.
22. Dillaha, T. A., Reneau, R. B., Mostaghimi, S., and Lee, D., 1989a, “Vegetative filter strips for agricultural nonpoint source pollution control,” Transactions of the ASAE, Vol.32, No. 2, pp. 513-519.
23. Dillaha, T.A., Sherrard, J.H., and Lee, D., 1989b, “Long-term effectiveness of vegetative filter strips,” Water, Environment & Technology, Vol. 1, pp. 419-421.
24. Dosskey, M.G., Schultz, R.C., and Isenhart, T.M., 1997a, “A riparian buffer design for cropland,” Agroforestry Notes, No. 5, National Agroforestry Center, Lincoln, Nebraska,4p.
25. Dosskey, M.G., Schultz, R.C., and Isenhart, T.M., 1997b, “How to design a riparian buffer for agricultural land,” Agroforestry Notes, No. 4, National Agroforestry Center, Lincoln, Nebraska,4p.
26. Dosskey, M.G., Schultz, R.C., and Isenhart, T.M., 1997c, “Riparian buffers for agricultural land,” Agroforestry Notes, January 1997, No. 3, National Agroforestry Center, Lincoln, Nebraska, pp. 4.
27. Fennessy, M.S. and Cronk, J.K., 1997, “The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate,” Critical Reviews in Environmental Science and Technology, Vol. 27, pp. 285-317.
28. Franti, Thomas G.,1997, “Vegetative Filter Strips for Agriculture. Nebraska Cooperative Extension,” NF, pp. 97-352.
29. Georgia Stormwater Management Manual Subdivision., 2001, “Filter strip,” Georgia Stormwater Management Manual,,2: 3.3-3.3.3-10.
30. Gharabaghi, B., Rudia, R.P., Whiteley, H.R., and Dickinson, W.T., 2000, “Sediment-removal efficiency of vegetative filter strips,” Guelph Turf grass Institute 2000 Annual Research Report, pp. 32-40.
31. Green J.C., 2005, “Modelling flow resistance in vegetated streams;review and development of new theory,” Hydrological processes, Vol. 19, pp. 1245-1259.
32. Grismer, M.E., O’Green, A.T., and Lewis, D., 2006, “Vegetative filter strips for nonpoint source pollution control in agriculture,” University of California, Division of Agriculture and Natural Resources, Pub. 8195,7p.
33. Hayes, J. C., Barfield, B. J. and Barnhisel, R. I., 1984, “Performance of grass filters under laboratory and field conditions,” Transactions of the ASAE, Vol. 27,No. 5, pp. 1321-1331.
34. ISU Forestry Extension, Buffer Strips for Riparian Zones, ISU Forestry Extension.
35. Jin, C.-X., Dabney, S. M. and Romkens, M. J. M., 2002, “Trapped mulch increases sediment removal by vegetative filter strips,” A flume study. Transactions of the ASAE, Vol. 45, No. 4, pp. 929-939.
36. Johnson, A.W. and Ryba, D. M., 1992, “A literature review of recommended buffer widths to maintain various functions of stream riparian areas. Prepared for King County Surface Water Management Division." Aquatic Resource Consultants, Renton, WA. , pp. 29.
37. Kemper, D., Dabney, S., Kramer, L., Dominick, D., and Keep, T., 1992, “Hedging against erosion.” Journal of Soil and Water Conservation, Vol. 47, pp. 284-288.
38. Ledwith, T., 1996, “The effects of buffer strip width on air temperature and relative humidity in a stream riparian zone,” Newsletter summer 1996, Watershed Management Council, CA.
39. Thompson, D.B., Loudon, T.L., and Gerrish, J.B., 1978, “Winter and spring runoff from manure application plots,” American Society of Agricultural Engineers, No.78-2032, pp.19.
40. Vianello, M., Vischetti, C., Scarponi, L., and Zanin, G., 2005, “Herbicide losses in runoff events from a field with a low slope: Role of a vegetative filter strip,” Chemosphere. Vol. 61, pp. 717-725.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔