(54.236.58.220) 您好!臺灣時間:2021/02/27 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏宏軒
研究生(外文):Hung-Hsuan Yen
論文名稱:市售Aspergillus niger果膠酵素中果膠酯酶之分離純化 及其果膠轉醯化催化反應之探討
論文名稱(外文):Pectin transacylation catalyzed by pectinesterase purified from commercial Aspergillus niger pectolytic enzyme
指導教授:吳明昌江啟銘江啟銘引用關係
指導教授(外文):Ming-Chang WuChi-Ming Chiang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:果膠酯酶商業果膠酵素轉醯化反應Aspergillus niger
外文關鍵詞:Pectinesterasecommercial pectolytic enzymestransacylationAspergillus niger
相關次數:
  • 被引用被引用:1
  • 點閱點閱:472
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
果膠酯酶( pectinesterase, PE )會水解果膠上半乳糖醛酸之甲氧基,釋放出甲醇,進而降低果膠的酯化度。近年來有研究指出植物來源之PE於進行水解反應的同時,亦催化轉醯化反應,而微生物來源之PE則未見文獻探討,故本研究以微生物(Aspergillus niger)生產之商業果膠酵素的PE,證實此PE是否具催化轉醯化反應之能力,以及探討其催化轉醯化的最適條件。研究結果顯示,去酯化反應的最適條件,係在無氯化鈉的存在下,以pH 5.0在40℃下反應,有最高的活性表現。採用雷射粒徑分析法之方式,可證實Aspergillus niger PE會催化轉醯化反應,在果膠分子間產生新酯鍵,使果膠的分子量變大。轉醯化反應的程度與環境因子有關,在0.3%濃度下之果膠較適於 Aspergillus niger PE催化轉醯化反應,而PE酵素活性或反應時間的增加,亦會使果膠分子的粒徑明顯增加,其最適反應條件為pH 3.0~3.35,溫度為40℃。根據實驗結果顯示,Aspergillus niger 之PE所催化的轉醯化反應與其活性並非呈正相關。此外,Aspergillus niger 之PE所催化的轉醯化反應,在pH 3.35及3.0下反應有較大的粒徑變化, 因此pH值在轉醯化反應系統扮演相當重要的角色。
Pectinesterase (PE) will hydrolyze the methoxyl groups in the galacturonic acids of pectin to release methanol and the degree of esterification will be decreasing. Recent researches indicated that transacylation reaction occurred simultaneously when the de-esterification reaction progressed by PE through the analysis of gel permeation chromatography, viscometer and Instron etc.. The PE catalyzed the transacylation, and the new forms of ester linkages between pectin molecules also will be illustrated, and the increscent in the molecular weight of pectin in the presence of PE during incubation. Results showed that PE from Aspergillus niger remarkably conducted the transacylation that was affected by some factors, the optimal conditions for transacylation by Aspergillus niger PE were 40 ℃ and at pH 3.0~3.35 by laser particle size analysis. The transacylation catalyzed by PE from Aspergillus niger is not showed positive relation to it’s enzyme activity, the range of particle size is wide in pH 3.35 and 3.0, the pH value plays an important role in transacylation reaction.
中文摘要Ⅰ
AbstractⅡ
謝誌Ⅲ
目錄Ⅳ
圖表目錄Ⅸ
1、前言1
2、文獻回顧2
2.1果膠源起2
2.2果膠結構2
2.3商業果膠2
2.3.1商業果膠之來源7
2.3.2商業果膠之萃取7
2.3.3高酯化度果膠之製造方式7
2.3.4低酯化度果膠之製造方式7
2.4果膠的物理性質9
2.4.1粉末性質9
2.4.2分子量9
2.4.3儲存安定性9
2.4.4黏度9
2.4.5溶解度10
2.4.6凝膠性10
2.4.6.1高甲氧基果膠之凝膠原理10
2.4.6.2低甲氧基果膠之凝膠原理13
2.5果膠的化學性質13
2.5.1果膠安定13
2.5.2果膠酯化度14
2.5.3果膠分子的去酯化作用14
2.5.4果膠分子的裂解17
2.5.4.1β-脫去反應17
2.5.4.2水解反應17
2.6果膠在食品上之應用18
2.7市售果膠酵素20
2.8果膠酯酶20
2.8.1果膠酯酶之來源20
2.8.1.1植物性來源20
2.8.1.2微生物來源21
2.8.2果膠酯酶之化學組成21
2.8.3果膠酯酶之作用方式25
2.8.4果膠酯酶之同功酶作用25
2.8.5果膠酯酶去酯化活性測定25
2.8.5.1鹼滴定法25
2.8.5.2比色法27
2.8.6影響果膠酯酶活性之因素27
2.8.6.1溫度27
2.8.6.2酸鹼值27
2.8.6.3金屬離子之種類及濃度29
2.9果膠酵素分離純化29
2.9.1粗酵素液的製備29
2.9.2硫酸銨鹽析29
2.9.3層析法30
2.9.4有機溶劑沉澱法31
2.9.5其它分離純化之分析方法31
2.10果膠酯酶所催化轉醯化反應31
2.10.1轉醯化反應可能之機制31
2.10.2轉醯化反應結果之檢測34
2.10.2.1膠濾層析法34
2.10.2.2膠體硬度34
2.10.2.3黏度36
2.10.2.4混濁度36
2.10.2.5雷射粒徑分析儀36
3、材料與方法37
3.1實驗材料37
3.1.1豌豆莢皮37
3.1.2商業果膠酵素37
3.2儀器設備37
3.3化學試藥38
3.4實驗架構40
3.5植物組織酒精不溶物交聯處理及提高酯化度之處理40
3.5.1植物組織酒精不溶物之製備40
3.5.2植物組織交聯產物之製備40
3.5.3高酯化度植物組織酒精不溶物之製備40
3.6以植物組織管柱層析純化果膠酵素試驗42
3.6.1高酯化度植物組織酒精不溶物管柱42
3.7商業果膠分解酵素之純化及純度分析42
3.7.1高酯化度交聯化酒精不溶物膠體層析法42
3.7.2膠濾層析法42
3.7.3 SDS不連續聚丙烯醯胺膠體電泳製備43
3.8酵素活性測定47
3.8.1果膠酯酶活性測定47
3.8.1.1鹼滴定法47
3.8.1.2比色法47
3.8.2聚半乳醣醛酸酶測定48
3.8.3DNS指示劑之配製流程48
3.8.4果膠分解酵素活性測定48
3.9蛋白質含量測定49
3.10.1最適pH值49
3.10.2最適溫度49
3.10.3溫度耐受性49
3.10.4最適鹽濃度49
3.11商業果膠酵素之PE催化轉醯化反應條件之探討50
3.11.1果膠受質之前處理50
3.11.2轉醯化反應條件之探討50
3.11.2.1果膠濃度50
3.11.2.2 pH值50
3.11.2.3酵素活性50
3.11.2.4鹽濃度51
3.11.2.5反應時間51
3.11.2.6溫度51
3.11.2.7果膠酯酶溫度耐受性51
3.11.2.8添加氯化鈣對轉醯化反應之影響52
3.11.3雷射粒徑分析儀檢測轉醯化反應52
4、結果與討論53
4.1市售果膠酵素之PE純化53
4.1.1交聯化酒精不溶物親和性管柱層析53
4.1.2超過濾濃縮56
4.1.3膠濾層析56
4.2電泳分析56
4.3 Aspergillus niger PE之最適去酯化活性探討59
4.3.1酸鹼值59
4.3.2溫度59
4.3.3熱穩定性64
4.3.4鹽濃度64
4.3.5氯化鈣之添加64
4.4 Aspergillus niger PE所催化轉醯化反應之探討65
4.4.1以雷射粒徑分析儀偵測果膠分子粒徑變化68
4.4.2果膠濃度對轉醯化反應之影響68
4.4.3 PE活性對轉醯化反應之影響69
4.4.4 pH對轉醯化反應之影響69
4.4.5溫度對轉醯化反應之影響73
4.4.5.1最適溫度73
4.4.5.2熱穩定性試驗73
4.4.6反應時間對轉醯化反應之影響76
4.5 PE去酯化活性與其所催化轉醯化反應結果之比較80
5、結論81
參考文獻82
作者簡介93

王偉修。2001。MF薄膜阻塞現象之探討。國立成功大學環境工程系碩士
論文。

尤準、陶兆新、馮紅霞。2002。微生物原果膠酶的研究進展。工業微生物 32(1): 50-3。

江啟銘。1995。I、不同生長期及不同部位之豌豆植物中果膠酯酶同功酶之消長及其純化 、生理意義及應用性之研究 II、果膠酯酶同功酶反應機制之研究。國立台灣大學農業化學系碩士論文。

李靜雯。2002。番茄及柳橙果膠酯酶所催化轉醯基反應之探討。國立台灣大學食品科技研究所碩士論文。

李柏宏。2000。愛玉子凝膠性質及愛玉凍品質之研究。國立台灣大學農業化學研究所博士論文。

巫華美、周健。1997。禾黑芽枝酶誘變體果膠酶的分離純化及理化特性。貴州科學 15(3): 163-70。

林建城、楊文杰、朱麗準、王志鵬、陳國強。2006。商品果膠酶( Aspergillus niger )的催化動力學研究。甘肅衣業大學學報 4: 81-5。

林正彥。1976。果膠。食品工業 8(4): 18-22。

林冠慧。2002。利用豌豆莢皮製備高酯化果膠親和性膠體純化果膠酯酶。國立屏東科技大學食品科學系碩士學位論文。

柯文慶。1985。果膠之凝膠與果醬製造。食品工業 17(12): 12-7。

侯文琪。1994。I、豌豆植物中果膠鍵結模式之研究。II、豌豆植物中果膠酯酶及果膠酸甲基化酵素之分離及反應機制之研究。國立台灣大學農業化學研究所博士學位論文。

陳雅惠。2002。龍鬚菜果膠酯酶所催化轉醯基反應之探討。國立屏東科技大學食品科學系碩士學位論文。

黃評脩。2006。以再酯化CL-AIS分離市售果膠酵素之果膠解離酶降低黑后葡萄酒中甲醇含量之研究。國立屏東科技大學食品科學系碩士學位論文。

趙麗莉、田呈瑞、紀花、呂爽。2007。微生物果膠酶研究及其在果蔬加工中的應用發展。現代生物醫學進展 7(6):951-3。

彰銀梅、李心治、黃凡、張宇、范樹田。2000。枯草桿菌( Bacillus subtilis )產果膠酶的研究I.菌種選育、鑑定及其酶學特徵分析。工業微生物 30(1): 25-7。

賴盈璋。1998。愛玉子果膠酯酶所催化轉醯基反應與愛玉子瘦果中所存在抑制劑之探討。國立台灣大學農業化學所碩士論文。

鐘智育。1996。豌豆莢果膠酯酶所催化轉醯基反應與其應用於仿製愛玉凍之可行性探討。國立台灣大學農業化學研究所碩士論文。

Ampe F, Keleke S, Robert W, Brau A. 1995. The role and origin of pectin degrading enzymes during cassava retting. Transformation Alimentaire du Manioc. 331-344.

Aynur Ö, Emine K, Sule P. 2008. Purification and biochemical characteristics of pectinesterase from malatya apricot (Prunus armeniaca L.). Preparative Biochemistry and Biotechnology 38: 358-75.

BeMiller JN. 1986. An introduction to pectins: structure and properties. In “Chemistry and Function of Pectins”. ed. by Fishman ML, Jen JJ. ACS Symposum Series 310. Washington, DC: 2-12.

Bordenave M, Goldberg R. 1993. Purification and characterization of pectin methylesterase from mung bean hypocotyl cell wall. Phytochemistry 33(5): 999-1003.

Braddock RJ. 1999. In: Handbook of citrus by-products and processing technology; Wiley, J. & Sons, Inc, New-York.

Broeck IV, Ludikhuyze LR, Loey AMV, Hendrickx ME. 2000. Effect of temperature and/or pressure on tomato pectinesterase activity. Journal of Food Science 48(2): 551-8.

Carpin S. 2001. Identification of a Ca2+-pectate binding site on an apoplastic peroxidase. Plant Cell 13: 511-20.

Christensen SH. 1986. Pectins. In “Food Hydrocolloids”. Ed. Glicksman M. CRC Press, Inc. Florida 205.

Christensen SH. 1986. Pectins. Food Hydrocolloids 3: 205-30.

Corredig M, Kerr W, Wicker L. 2000. Molecular characterisation of commercial pectins by separation with linear mix gel permeation columns in-line with multi-angle light scattering detection. Food Hydrocolloids 14: 41-7.

Collins JL. 1970. Pectin methyl esterase activity in southern pears ( Vigna sinensis ). Journal of Food Science 35(1): 1-4.

Deuel H, Stutz E. 1958. Pectic substances and pectic enzymes. Advances in Enzymology and Related Areas of Molecular Biology 20:341-6.

Dunand C. 2002. Identification and characterisation of Ca2+- pectate binding peroxidases in Arabidopsis thaliana. Journal of Plant Physiology 159: 1165-71.

Fayyaz A, Asbi BA, Ghazali HM, Che Man YB, Jinap S. 1993. Pectinesterase extraction from papaya. Food Chemistry 47(2):183-5.

Fayyaz A, Asbi BA, Ghazali HM, Che Man YB, Jinap S. 1995. Kinetics of papaya pectinesterase. Food Chemistry 53: 129-35.

Fogarty WM, Kelly CT. 1983. Pectic enzymes. In “Microbial Enzymes and Biotechnology”. Applied Science Publishers, London 131-82.

Forster H. 1988. Pectinesterases from Phytophthora infestans. Methods in Anzymology 161: 355-61.

Gilsenan PM, Richardson RK, Morris ER. 2000. Thermally reversible acid-induced gelation of low-methoxy pectin. Carbohydrate Polymers 41: 339-49.

Goldberg R. 1984. Changes in the properties of cell wall pectin methylesterase alomg the Vigna radiata hypocotyls. Physiologia Plantarum 61:58-63.

Guillotin S. 2005. Studies on the intra- and intermolecular distributions of substituents in commercial pectins. ISBN 90-8504-265-8.

Guillotin SE, Bakx EJ, Boulenguer P, Mazoyer J, Schols HA, Voragen AGJ. 2005. Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities. Carbohydrate Polymers 60: 391-8.

Glicksman M. 1969. Pectins. In “Gum technology in the food industry”. Ed by Glicksman M. Academic Press, New York 159-90.

Hou WC, Chang WH. 1996. Pectinesterase-catalyzed firming effects during precooking of vegetables. Journal of Food Biochemistry 20(5): 397-416.

Hwang JY, Lee CW, Wu MC, Chang HM. 2003. Transacylation and de-esterification reactions of pectin as catalyzed by pectinesterases from tomato and citrus. Journal of Agricultural and Food Chemistry 51: 6287-92.

Ishii S, Sugiyama S, Sugimoto H. 1979. Low-methoxyl pectin prepared by pectinesterase from Aspergillus japonicus. Journal of Food Science 44: 611-4.

Jiang CM, Wu MC, Chang WH, Chang HM. 2001. Change in particle size of pectin reacted with pectinesterase isozymes from pea ( Pisumsativum L. ) sprout. Journal of Agricultural and Food Chemistry 49(9): 4383-7.

Julio MS, Alejandro T, Heliodoro G, María LR, Juan CCE, Cristóbal NA. 2000. Purification and some properties of pectinesterase from potato (Solanum tuberosum L.) Alpha Cultivar. Brazilian Archives of Biology and Technology 43: 1516-8913.

Kawabata A, Sawayama S, Nakahara H, Kanmata T. 1981. Mechanism of association of various demethylated pectin by calcium ions. Agricultural and Biological Chemistry 45: 965-73.

Keijbets MJH and Pilnik W. Some problems in the analysis of pectin in potato tuber tissue. Potato Research 17: 169-77.

Kieffer F. 2000. The fungal elicitor cryptogein induces cell wall modifications on tobacco cell suspension. Journal of Experimental Botany 51: 1799–811.

King K, Mitchell JR, Norton G, Caygill J. 1986. In situ de-esterification of lime pectin. Journal of Food Science 37(4): 391-408.

King K. 1990. Partial characterization of the in situ activity of pectinesterase in Bramley apple. International Journal of Food Science & Technology 25(2): 188-97.
Kim H. 1988. Galacturan, 1,4-α-galactuionidase from carrot Daucus carota and liverwort Marchantia polymorpha. Methods in Enzymology 161: 373-80.

Kim WJ, Rao VN, Smit CJB. 1978. Effect of chemical composition on compressive mechanical properties of low ester pectin gils. Journal of Food Science 43(2):527-75.

Kiyoshi T, Kaji A. 1988. Polygalacturonase from Corticium rolfsii. Methods in Enzymology. 161:361-5.

Körner B, Zimmerman G, Berk Z. 1980. Orange pectinesterase: purification, properties and effect on cloud stability. Journal of Food Science 45(5): 415-8.

Korner B, Zimmermann G, Berk Z. 1980. Orange pectinesterase: Purification, properties and effect on cloud stability. Journal of Food Science 45:1203-6.

Konno H. 1988. Endopectate lyase from Erwinia aroideae. Methods in Enzymology 161: 381-5.

Kravtchenko TP, Arnould I, Voragen AGJ, Pilnik W. 1992. Improvement of the selective depolymerisation of pectic substances by chemical beta-elimination in aqueous solution. Carbohydrate Polymers 19: 237-42.

Kulp K. 1975. Carbohydrate. In “Enzymes in Food Procrssing”. ed. by Reed, G. Academic Press. New York 107-22.

Lea A GH. 1991. Enzyme in the production of beverage and fruit juice. In “Enzymes in Food Processing”. AVI. New York 208.

Lee M, MacMillan JD. 1968. Mode of action of pectin enzymes. I. Purification and certain properties of tomato pectinesterase. Biochemistry 7: 4005-10.

Leroux J, Langendorff V, Schick G, Vaishnav V, Mazoyer J. 2003. Emulsion stabilizing properties of pectin. Food Hydrocolloids 17: 455-62.

Lim YM, Chung MC. 1993. Isolation and characterization of pectin methylesterase from papaya. Arch Biochem Biophys 307(1): 15-20.

Lofgren C, Guillotin S, Evenbratt H, Schols H, Hermansson A. 2005. Effects of calcium, pH and blockiness on kinetic rheological behavior and microstructure. Biomacromolecules 6: 646-52.

Lund BM. 1971. Bacterial spoilage of vegetables and certain fruits. Journal of Applied Microbiology 34:9-20.

May CD 1990. Industrial pectins: sources, production and applications. Carbohydrate Polymers 12: 79-99.

McFeeter RF, Armstrong SA. 1984. Measurement of pectin methylation in plant cell walls. Analytical Biochemistry 139(1): 212-7.

Oakenfull D, Scott A. 1984. Hydrophobic interaction in the gelation of high methoxyl pectin. Journal of Food Science 49(4): 1093-8.

Ortega N, Diego S, Perez-Mateos M. 2004. Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chemistry 88: 209-17.

Otakar M. Lubomira R-B. 1988. High perfromance liquid chromatography of pectin enzymes. Methods in Anzymology 162: 385-99.

Pelloux J, Christine R, Ewa JM. 2007. New insights into pectin methylesterase structure and function. Trends in Plant Science 12(6): 267-77.

Pitt D. 1988. Pectin lyase from Phoma medicaginisrar. Pinodella. Methods in Anzymology 161: 350-4.

Pressey R, Avants JK. 1972. Multiple forms of pectinesterase in tomatoes. Phytochemistry 11(11): 3139-42.

Rinaudo M. 1989. Effect of chemical structure of pectins on their interactions with calcium. In “Plant Cell Wall Polymers Biogenesis and Biodegradation”. Ed. By Lewis NG, Paice M. ACS Symposum Series 339. Washington, DC. 330.

Rolin C. 2002. Commercial pectin preparations. In: Pectins and their Manipulation; Seymour G. B. Knox J. P. Blackwell Publishing Ltd, 222-39.

Rombouts FM, Wissenburrg AK, Pilnik W. 1979. Chromtographic separation of orange pectinesterase isoenzymes on pectates with different degrees of crosslinking. Journal of Chromatography 168: 151-61.

Rouse AH, Atkins CD, Moore EL. 1962. Seasonal changes occurring in the pectinesterase activity and pectin con stituents of the component parts of citrus fruits. I. Valencia oranges. Journal of Food Science 48:419.

Sajjaanantakul T, Pitifer LA. 1991. Pectinesterase. In “The Chemistry and Technology of pectin”. Ed. By Walter R. H. Academic Press, New York. 135-64.

Schejter A, Marcus L. 1988. Isozymes of pectinesterase and polygalacturonase from Botrytis cinerea Pers. Methods in Enzymology 161:366-73.

Schmohl N. 2000. Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiologia Plantarum 109: 419-27.

Taeko I, Rye Y, Koji K, Tokuo T. 2000. Purification and some properties of pectinesterase from fruits of a miniature-fruited red type tomato. Food Science and Technology Research 6: 54-8.

Van Buren JP. 1979. The chemistry of texture in fruits and vegetables. Journal of Texture Studies 10(1): 1-8.

Van DS, Pilnik W. 1987. Studies on pectin degradation. Acta Alimentaria 16: 143.

Verhoef R, Waard P, Schols HA, Rätto M, Siika-aho M, Voragen AGJ. 2002. Structural elucidation of the EPS of slime producing Brevundimonas vesicularis sp. isolated from a paper machine. Carbohydrate Research 337: 1821-31.

Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF. 2003. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiology 132:1781-9.

Voragen AGJ, Pilnik W, Thibault J-F, Axelos MAV, Renard CMGC. 1995. Pectins. In: Food polysaccharides and their applications; Stephen A. M. New York: Marcel Dekker Inc. pp 287-339.

Walter RH. 1983. A comparison of methods for polyuronide methoxyl determination. Food Hydrocolloids 1(1): 34-6.

Warrilow AGS, George Jones MG. 1995. Different forms of tomato pectinesterase have different kinetic properties. Phytochemistry 39(2): 277-82.

Wegrzyn TF, Macrae EA. 1992. Pectinesterase, polygalacturinase and β-galactosidase during softening of ethy lene-treated kiwifruit. HortScience 27(8):900-2.

Wu MC, Chen YW, Hwang JY, Lee BH, Chang HM. 2004. Transacylation of citrus pectin as catalyzed by pectinesterase from tendril shoots of chayote [Sechium edule (Jacq.) Swartz]. Food Research International 37: 759-65.

Yoo SH, Fishman ML, Hotchkiss AT, Lee HG. 2005. Viscometric behavior of high-methoxy and low-methoxy pectin solutions. Food Hydrocolloids 20: 62-7.

Zhang BG, Bai ZH, Li ZM, Zhang GZ, Zhang HX. 2005. Alkaline pectinase production by Bacillus clausii S-4 with solid state fermentation. Food and Fermentation Industries 31: 8-11.

Zhang YM, Li XS, Huang F, Zhang Y, Fan ST. 2000. Studies on alkaline pectic enzyme from B. subtilis Ⅰ. Selection, identification of stain and properties of pectic enzymes. Industrial Microbiology 30: 25-7.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔