(34.236.244.39) 您好!臺灣時間:2021/03/09 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳富民
研究生(外文):Chen, Fu-Min
論文名稱:高功率LED路燈模組之熱分析
論文名稱(外文):Thermal Analysis of High Power LED Streetlight Module
指導教授:陳念慈陳念慈引用關係
指導教授(外文):Chen, Nyen-Ts
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:溫度分佈熱通量熱率熱梯度
外文關鍵詞:temperature distributionthermal fluxheat flowthermal gradient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別對高功率LED路燈模組之LED光源模組與散熱模組進行熱分析,藉由CAE軟體模擬結果與實驗結果的比較,探討各模組之熱行為,並提出可具體改善溫度的方法。
軟體方面使用ANSYS 8.0有限元素分析套裝軟體,設定條件以恆定的發熱功率與自然對流下的熱邊界條件,分別對各模組進行溫度場模擬,藉由有限元素法求解各模組之溫度分佈、熱通量、熱率與熱梯度。
實驗方面在常溫常壓之自然對流條件下,操作各模組並待至溫度變化趨於穩定的狀態後,以一熱影像分析儀與紅外線測溫槍,分別對路燈散熱模組與LED光源模組進行溫度量測。
結果顯示,散熱模組模擬值約46.02 ℃、實驗值約45.5 ℃;LED光源模組模擬值約101.33 ℃、實驗值約100.7 ℃;將模擬結果與實驗結果相互比對後,其結果顯示光源模組之模擬誤差範圍約在2 %內,而散熱模組之模擬誤差範圍則約在3.5 %內。
本研究針對各模組之溫度模擬結果提出三種不同改善條件,將各種改善條件之模擬結果相互比較後,並提出較佳之改善條件;光源模組之鋁基板增厚1 mm可達到約3.45 %的溫度改善效率,而加裝銅散熱塊之散熱模組可達到約6.2 %的改善效率。
This study reports on thermal analysis of the LED module and the cooling module of the high power LED streetlight module, respectively. By the simulation results compared with the experimental results, the thermal behavior of each module is observed. According to the simulation temperature values of each module, we proposed that various ways decreased the temperature values of the modules.
In the study, we simulated temperature flied of each module by using ANSYS 8.0 software. By the boundary conditions of each module are defined that there are constant power and free convection. The analysis results of each module are solved by finite element method that there are temperature distribution, thermal flux, thermal gradient and heat flow.
For experiment, we are operating each module for a long time in normal ambient temperature and atmosphere. When the temperature of each module is steady state, we measured the temperature of each module by using the thermography and the infra-red thermometer.
The temperature results of each module shown, the results of the cooling module is made that the simulation value is 46.02 ℃ and the experimental value is 45.5 ℃. The results of the LED module is made that the simulation value is 101.33 ℃ and the experimental value is 100.7 ℃. After the simulation results are compared with the experimental results, The Error range of the LED module is within 2 % and the cooling module is within 3.5 %.
For simulation temperature values, we proposed three ways that the temperature of each module is decrease. The better way is proposed by comparing the three ways. The temperature decrease rate of the LED module is about 3.45 % by the thickness of aluminum substrate increased 1 mm. The rate of the cooling module is about 6.2 % by installing the copper heat slug.
目錄
摘要 ..................................................... I
Abstract ............................................... III
謝誌 ..................................................... V
目錄 ................................................... VII
表目錄 .................................................. XI
圖目錄 ................................................. XIV
第一章 緒論 ............................................... 1
1.1 前言 ............................................... 1
1.2 文獻回顧 ............................................ 3
1.3 研究動機 ............................................ 4
1.4 研究規劃 ............................................ 5
1.5 分析樣品之規格 ...................................... 6
1.6 問題定義 ........................................... 10
1.7 分析目標之定義 ..................................... 11
1.8 論文架構 ........................................... 12
第二章 有限元素分析 ....................................... 13
2.1 CAE模型之建構 ...................................... 13
2.2 元素類型之定義 ..................................... 16
2.3 材料性質之定義 ..................................... 16
2.4 邊界條件之定義 ..................................... 17
2.5 理念有限元素模型之建構 .............................. 19
2.6 模擬&計算 .......................................... 21
2.6.1 穩態溫度場之模擬 ............................... 21
2.6.2 暫態溫度場之模擬 ................................ 22
2.7 溫度場模擬結果 ..................................... 24
2.7.1 LED光源模組之穩態溫度場模擬 ...................... 24
2.7.2 LED光源模組之暫態溫度場模擬 ...................... 27
2.7.3 路燈散熱模組之穩態溫度場模擬 ..................... 28
2.7.4 路燈散熱模組之暫態溫度場模擬 ..................... 31
第三章 實驗量測 ........................................... 33
3.1 實驗環境之設計 ..................................... 33
3.2 實驗設備 ........................................... 33
3.3 實驗量測 ........................................... 36
3.3.1 路燈散熱模組之實驗量測 .......................... 36
3.3.2 LED光源模組之實驗量測 ........................... 37
3.4 實驗量測結果 ....................................... 38
3.4.1 路燈散熱模組之測溫結果 .......................... 38
3.4.2 LED光源模組之測溫結果 ........................... 39
3.5 模擬與實驗之誤差比對 ................................ 39
第四章 產品改良之溫度模擬 .................................. 41
4.1 變更LED光源模組之基板材質 ........................... 41
4.2 變更LED光源模組之基板厚度 ........................... 43
4.3 變更路燈散熱模組之整體材質 ........................... 46
4.4 變更路燈散熱模組之鰭片尺寸 ........................... 48
4.5 路燈散熱模組加裝銅材散熱塊 ........................... 50
4.6 路善效率之分析 ..................................... 53
第五章 結果與討論 ......................................... 55
5.1 模擬與實驗之誤差比對 ................................ 55
5.2 改善效率之分析 ..................................... 56
第六章 結論 .............................................. 58
參考文獻 ................................................. 60
附錄1 ................................................... 63
附錄1.1 高功率LED路燈模組之穩態熱模擬 .................... 63
附錄1.2 高功率LED路燈改良模組之穩態熱模擬 ................. 64
附錄1.3 無鰭片之路燈散熱模組之穩態熱模擬 .................. 66
附錄2 ................................................... 67
作者簡介 ................................................. 68
[1] 淺談LED熱量產生的原因http://www.ledinside.com/tw/index,2008.09.05。
[2] http://chimge.unil.ch/En/cin/1cin15.htm,2008.09.05。
[3] J. Petroski, 2004, “Spacing of High brightness LEDs Metal Substrate PCB’s for Proper Thermal Performance,” IEEE Inter Society Conference Thermal Phenomena, pp.507-514.
[4] 周韋全,2008,SMD型LED鋁基板之熱傳遞與熱變形分析,碩士論文,國立屏東科技大學,機械工程系,屏東,66頁。
[5] LUXEON K2 Datasheet DS51。
[6] 沈俊宏,2008,高功率LED散熱模組之專利分析與熱傳導模擬,碩士論文,和春技術學院,電機工程研究所,高雄,142頁。
[7] 李承士,2008,高功率LED在戶外燈具之應用,專題簡報,佰鴻工業股份有限公司,台北,49頁。
[8] Hyun-Ho Kim, Sang-Hyun Choi, Sang-Hyun Shin, Young-Ki Lee, Seok-Moon Choi, Sung Yi, 2008, “Thermal transient characteristics of die attach in high power LED PKG,” Microelectronice Reliability 48, pp. 445-454.
[9] Bo-In Noh, Bo-Young Lee, Seung-Boo Jung, 2008, “Thermal fatigue performance of Sn–Ag–Cu chip-scale package with underfill,” Materials Science & Engineering A 483-484, pp. 464-468.
[10] Lan Kim, Jong Hwa Choi, Sun Ho Jang, Moo Whan Shin, 2007, “Thermal analysis of LED array system with heat pipe,” Thermochimica, Acta 455, pp. 21-25.
[11] Lianqiao Yang, Sunho Jang, Woongjoon Hwang and Moowhan Shin, 2007, “Thermal analysis of high power GaN-based LEDs with ceramic package,” Thermochimica Acta 455, pp. 95-99.
[12] 奧古斯丁科技股份有限公司http://www.augux.com.tw/,2008.09.06。
[13] 王栢村,2001,電腦輔助工程分析之實務與應用,全華科技圖書股份有限公司,台北,512頁。

[14] 方聖棻,2005,高溫作用對水庫淤泥輕質骨材混凝土性質之影響,碩士論文,國立高雄應用科技大學,土木工程與防災科技研究所,高雄。
[15] 泰菱有限公司http://www.oka.com.tw/,2008.09.06。
[16] 元正儀器公司http://instech.com.tw/public_html/opto_more_1.htm,2009.04.07。
[17] 黃秉鈞,2006,LED照明世紀已來臨,台灣大學機械系暨新能源中心,專題演講,台北,80頁。
[18] 王進榮,2008,太陽電池與LED路燈,工業研究院暨能源與環境研究所,能源報導,新竹,22頁。
[19] 化工引擎辭典http://www.chemyq.com/xz/xz6/57867koobh.htm,2009.04.08。
[20] 胡詠淋,2006,小尺寸LED背光模組光學特性檢測與導光板之熱傳分析,碩士論文,國立屏東科技大學,機械工程系,屏東,116頁。
[21] 蔡長翰,2007,LED晶片熱傳分析與模擬,碩士論文,國立屏東科技大學,機械工程系,屏東,100頁。
[22] Masri Ayob, Graham Kendall, 2008, “A survey of surface mount device placement machine optimisation: Machine classification,” European Journal of Operational Research 186, pp.893-914.
[23] Sungkyu Lee, 2003, “Design optimization of surface mount device 32.768 kHz quartz tuning fork-type crystals using finite element method and statistical analysis of test samples manufactured using photolithography,” Surface Engineering, Surface Instrumentation & Vacuum Technology, Vacuum 68, pp.139-148.
[24] Pradeep Hegde, Andrew R. Ochana, David. C. Whalley, Vadim. V. Silberschmidt, 2008, “Finite element analysis of lead-free surface mount devices,” Computational Materials, Science 43, pp.212-220.
[25] J. Naderman, R.T.H. Rongen, 1999, “Thermal resistance degradation of surface mounted power devices during thermal cycling,” Microelectronics Reliability 39, pp.123-132.
[26] Dirk Vollmer, Ulrich Meyer, Ulrich Joos, AndraÁs VeÁgh, Jo zsef PiffkoÁ, 2000, “Experimental and finite element study of a human mandible,” Journal of Cranio-Maxillofacial Surgery 28, pp.91-96.
[27] Yan Zhang, Ping Zhu, Xinmin Lai, 2006, “Finite element analysis of low-velocity impact damage in composite laminated plates,” Materials and Design 27, pp.513-519.
[28] M. Kemal Apalak, Recep Gunes, 2002, “On non-linear thermal stresses in an adhesively bonded single lap joint,” Computers and Structures 80, pp85-98.
[29] Ravi Kandasamy, A.S. Mujumdar, 2008, “Thermal analysis of a flip chip ceramic ball grid array (CBGA) package,” Microelectronics Reliability 48, pp.261-273.
[30] Man-Lung Sham, Jang-Kyo Kim, Joo-Hyuk Park, 2008, “Thermal performance of flip chip packages: Numerical study of thermo-mechanical interactions,” Computational Materials Science 43, pp.469-480.
[31] Zhang Yanfang, Li Lan, Zhang Xiaosong, Xi Qun, 2008, “Temperature effects on photoluminescence of YAG:Ce3+ phosphor and performance in white light-emitting diodes,” Journal of Rare Earths, Vol. 26, pp.446-449.
[32] Bo-In Noh, Bo-Young Lee, Seung-Boo Jung, 2008, “Thermal fatigue performance of Sn–Ag–Cu chip-scale package with underfill,” Materials Science and Engineering A 483-484, pp.464-468.
[33] Jie Li, Clement Kleinstreuer, 2008, “Thermal performance of nanofluid flow in microchannels,” International Journal of Heat and Fluid Flow 29, pp.1221-1232.
[34] J. Courteaud, P. Combette, N. Crespy, G. Cathebras, A. Giani, 2008, “Thermal simulation and experimental results of a micromachined thermal inclinometer,” Sensors and Actuators A 141, pp.307-313.
[35] Hyun-Ho Kim, Sang-Hyun Choi, Sang-Hyun Shin, Young-Ki Lee, Seok-Moon Choi, Sung Yi, 2008, “Thermal transient characteristics of die attach in high power LED PKG,” Microelectronics Reliability 48, pp.445-454.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔