(3.238.36.32) 您好!臺灣時間:2021/02/27 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳偉浩
研究生(外文):Wei Haw Wu
論文名稱:以溶膠-凝膠法製備介孔SiO2-CaO-P2O5 生醫玻璃
論文名稱(外文):Characterization of nanostructured mesoporous SiO2-CaO-P2O5 bioactive glass with a sol-gel method
指導教授:張莉毓
指導教授(外文):Lay Gaik Teoh
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:60
中文關鍵詞:溶膠–凝膠法生醫玻璃介孔材料界面活性劑
外文關鍵詞:sol-gel methodmesoporous bioactive glassmesoporous materialsurfactant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具有骨修復性能和生物相容性的生醫玻璃材料,其在齒科和骨科等臨
床領域具有重要的應用價值。介孔材料由於具有較高的比表面積和孔體
積之特性,因而具有遠高於普通生醫玻璃材料的體外生物活性。本研究
以三嵌段兩性共聚物(triblock copolymer)和十六烷基三甲基溴化銨(CTAB)
為天然有機模板,四乙矽酸鹽、硝酸鈣和三乙基磷酸鹽為反應物,利用
溶膠-凝膠法製備介孔SiO2-CaO-P2O5生醫玻璃。經TGA、XRD、FTIR、
SEM、TEM和BET分析材料微結構,探討不同Ca/P比例和煆燒溫度對介
孔結構之影響。
實驗結果顯示,以Ca/P比為2:2、3:2、4:2和5:2,係使用三嵌段兩性共聚
物經400 ~ 700°C煆燒後,獲得非晶相之介孔SiO2-CaO-P2O5生醫玻璃。以
十六烷基三甲基溴化銨為模板,煆燒溫度400 ~ 700 °C,Ca/P比為2:2,亦
為非晶相,而Ca/P比為3:2、4:2和5:2,則合成具有氫氧基磷灰石相之介孔
SiO2-CaO-P2O5生醫玻璃。另一方面,Ca/P比為4:2,以三嵌段兩性共聚物
為模板,經400 °C 煆燒後得到最大孔徑之介孔SiO2-CaO-P2O5生醫玻璃,
其平均孔徑可達400.29 Å。而利用十六烷基三甲基溴化銨為模板,Ca/P
比為3:2,經600 ºC煆燒後得到最大比表面積之介孔SiO2-CaO-P2O5生醫玻
璃,可達706.16 m2/g。
Bioactive glasses have attracted much attention because of good
biocompatibility and their wide usage as artificial biomaterials in bone repair
and replacement. Bioactive glasses are widely used in many tissue
engineering applications, such as in dental repairs and orthopedic fixation
devices, as well as many others. Mesoporous bioactive glasses materials have
received much interest because of their high specific surface area and pore
volume, and exhibit better in vitro bone forming bioactivity compared to
conventional bioactive glasses. In this study, mesoporous SiO2-CaO-P2O5
bioactive glass was prepared by sol-gel process and the synthesis was
accomplished by using triblock copolymer and CTAB as the templates,
tetraethyl orthosilicate, calcium nitrate tetrahydrate and triethyl phosphate as
the inorganic precursors. The effects of Ca/P ratio of precursors and calcining
temperatures on the structure of mesoporous SiO2-CaO-P2O5 bioactive glass
were investigated by TGA, XRD, FTIR, SEM, TEM and BET analyses.
Using triblock copolymer as the template, mesoporous SiO2-CaO-P2O5
bioactive glasses with the amorphous phase were obtained at 400~700°C for
Ca/P ratio of 2:2, 3:2, 4:2 and 5:2. Using CTAB as the template and the
samples calcined at 400~700°C were composed of amorphous phase for Ca/P
ratio of 2:2, but apatite phase were formed as the calcining temperatures were
400~700°C for Ca/P ratio of 3:2, 4:2 and 5:2. The mesoporous
SiO2-CaO-P2O5 bioactive glass is shown to have a large pore size of 400.29 Å
for Ca/P ratio of 2:2 and using triblock copolymer as template after being
calcined at 400℃. In addition, the mesoporous SiO2-CaO-P2O5 bioactive glass
III
also showed a high specific surface area of 706.16 m2/g at 600 ºC calcination
for Ca/P ratio of 3:2 and using CTAB as template.
摘要 .................................................................................................................... I
Abstract ............................................................................................................. II
謝誌 ................................................................................................................. IV
目錄 ................................................................................................................... V
表目錄 ............................................................................................................ VII
圖目錄 ........................................................................................................... VIII
第1 章 緒論 ...................................................................................................... 1
1-1 前言 ...................................................................................................... 1
1-2 孔洞材料 .............................................................................................. 2
1-3 研究動機與目的 .................................................................................. 3
第2 章 理論基礎 .............................................................................................. 5
2-1 界面活性劑性質簡介 .......................................................................... 5
2-1-1 分子結構 .................................................................................. 5
2-1-2 微胞的形成 .............................................................................. 8
2-1-3 界面活性劑分子聚集體之結構 ............................................ 11
2-2 介孔材料之合成與分析 .................................................................... 12
2-2-1 介孔材料的合成 .................................................................... 12
2-2-2 介孔材料之孔洞及比表面積分析 ........................................ 16
2-3 自然骨的構造 .................................................................................... 20
2-4 生醫材料 ............................................................................................ 20
2-4-1 生醫陶瓷 ................................................................................ 20
2-4-2 生醫玻璃 ................................................................................ 21
2-4-3 磷灰石 .................................................................................... 21
2-5 SiO2-CaO-P2O5 生醫玻璃之製備方法 ............................................. 22
2-6 溶膠-凝膠法 (sol-gel) ...................................................................... 22
第3 章 實驗方法與步驟 ................................................................................ 24
3-1 化學藥品 ............................................................................................ 24
3-2 介孔SiO2-CaO-P2O5 生醫玻璃之合成步驟 ................................... 24
VI
3-3 製程參數 ............................................................................................ 25
3-4 材料分析 ............................................................................................ 25
第4 章 結果與討論 ........................................................................................ 31
4-1 Ca/P 比例及煆燒溫度對合成介孔SiO2-CaO-P2O5 生醫玻璃之影響
(使用三嵌段兩性共聚物 F108) ..................................................... 31
4-1-1 熱重分析(TGA)...................................................................... 32
4-1-2 XRD 分析 ................................................................................ 32
4-1-3 FTIR 分析 ................................................................................ 32
4-1-4 SEM 表面型態分析 ................................................................ 36
4-1-5 TEM 分析 ................................................................................ 36
4-1-6 氮氣吸附/脫附曲線分析 ...................................................... 36
4-2 Ca/P 比例及煆燒溫度對合成介孔SiO2-CaO-P2O5 生醫玻璃之影響
(使用CTAB) ..................................................................................... 44
4-2-1 熱重分析(TGA)...................................................................... 44
4-2-2 XRD 分析 ................................................................................ 44
4-2-3 FTIR 分析 ................................................................................ 47
4-2-4 SEM 表面型態分析 ................................................................ 47
4-2-5 TEM 分析 ................................................................................ 47
4-2-6 氮氣吸附/脫附曲線分析 ...................................................... 51
第5 章 結論 .................................................................................................... 55
參考文獻 .......................................................................................................... 56
作者簡介 .......................................................................................................... 60
1. J. Y. Ying, C. P. Mehnert and M. S. Wong, 1999, “Synthesis and
applications of supramolecular-templated mesoporous materials”,
Angew. Chem. Int. Ed. 38, 56.
2. H. Verweij, 1998, “Nanocrystalline and nanoporous ceramics”, Adv.
Mater, 17: 1483.
3. M. Itoh, H. Hattori and K. Tanabe, 1976, “Catalytic sites on SnO2 and
TiO2-SnO2 for the isomerzation of 1-Butene”, J. Catal., 43: 192.
4. K. Langer, E. Mutschler, G. Lambrecht, D. Mayer, G. Troschau, F.
Stieneker and J. Kreuter, 1997, “Methylmethacrylate sulfopropyl
methacrylate copolymer nanoparticles for drug delivery part III:
evaluation as drug delivery system for ophthalmic application”, Int. J.
Pharmace, 158: 219.
5. M. Grätzel, 2001, “Ultrafast colour displays”, Nature, 409: 575.
6. S. H. Wang, T. C. Chou, and C. C. Liu, 2005, “Nano-crystalline
tungsten oxide NO2 sensor”, Sensors and Actuators B, 94: 343-351.
7. S. S. Park and J. D. Mackenzie, 1996, “Thickness and microstructure
effects on alcohol sensing of tin oxide thin films”, Thin Solid Films,
154: 274.
8. W. J. Ward, 1984, “Molecular sieve catalysts”, in applied catalysis,
Academic press, New York, p.11.
9. S. Bhatia, 1990, “Zeolite catalysis principles and application”, CRC
press, Florida, p.7.
10. C. T. Kresga, M. J. Roth, J. C. Vartuli, and J. S. Beck, 1992, “Ordered
mesoporous molecular sieves synthesized by a liquid-crystal template
mechanism”, Nature, 22: 359.
11. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.
D. Schmitted, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B.
Higgins, and J. L. Schlenker, 1992, “A new family of mesoporous
molecular sieves prepared with liquid crystal templates”, J. Am. Chem.
Soc., 114:10834.
12. 謝明發,2001,溶凝膠法合成氫氧基磷灰石及其製程與鑑定之研究,
國立清華大學材料科學與工程研究所博士論文,第5-6 頁。
57
13. 王傳輝、Q. Yang, 李賀軍、張守陽,2004,CaO-P2O5-SiO2 溶膠凝
膠玻璃在模擬體液中HCA 層形成的研究,功能材料期刊,第
2366-2369 頁。
14. 王慶文,2007,磁性氫氧基磷灰石之製備分析及作為癌症熱療之研
究,國立台北科技大學材料科學與工程研究所碩士論文,第22 頁。
15. 林恆裕,2000,以水熱法合成氫氧基磷灰石粉體,大同大學材料工
程研究所碩士論文,第5-6 頁。
16. 林品宏,1999,以水熱法在不鏽鋼基板上成長磷酸鈣陶瓷鍍層,大
同大學材料工程研究所碩士論文,第9 頁。
17. 張淑真,1993,水熱法合成氫氧基磷灰石粉末之研究,中原大學化
學學系碩士論文,第14 頁。
18. 林泰宏,2008,建立金屬離子在水溶液中與礦物表面上化學反應性
之線性自由能關係,中興大學土壤環境科學系所碩士論文,第49-54
頁。
19. 蔣孝澈,1993,矽沸石合成之研究,國立中央大學化學工程研究所
碩士論文,第24-27 頁。
20. L. M. Falter, D. A. Pane, T. A. Friedmann, W. H. Wright and D. M.
Ginsberg, 1988, “Reparation of Ceramic Superconductors by the
Pechini Method” Bri. Ceram. Proc., 41: 261.
21. H. Salze, P. Odier and B. Cales, 1986, “Laboration of fine micro
powders from organometallic plymers precursors” J. Non-Cryst. Solids,
82: 314.
22. 陳鴻博,2007,以回應曲面法探討添加陽離子界面活性劑透過溶膠-
凝膠法製備矽膠之影響,中原大學化學工程研究所碩士論文第4-5
頁。
23. 丁信智,2006,溶膠凝膠法製備鈣矽磷/幾丁聚醣複合材之特性研
究,中山醫學大學口腔材料科學研究所碩士論文,第17-19 頁。
24. 賈魯強、黎璧賢,2001,「漫談顆粒體物理」,物理雙月刊,第23
期,第503-510 頁。
25. B. Lindmanm and H. Wennerstrom, 1980, “Micells: Amphiphile
Aggregation in Aqueous solution”, Springer-Verlag, Heidelberg, p.6.
58
26. 張正明,2002,酸性溶液下中孔徑分子篩的反應機構之探討,中原
大學化學系碩士論文,第1-3 頁。
27. Y. C. Lin and S. H. Chen, 1996, “Ion correlations and counter-ion
condensation in ionic micellar solutions”, Condens. Matter, 8: 12169.
28. 高嘉珮,2000,中孔洞矽氧分子篩合成條件之控制及動力學研究,
國立台灣大學化學研究所碩士論文,第5 頁。
29. J. N. Israelachvili, S. Marcelja and R. G. Horn, 1980, “Physical
principles of membrane organization”, Q. Rev. Biophys, 13: 121.
30. D. J. Mitchell and B. W. Ninham, 1981, “Micelles, vesicles and
microemulsionsq”, J. Chem. Soc., Faraday, Trans, 77: 1264.
31. D. F. Evans and H. Wennerstrom, 1994, “The Colloidal Domain: Where
Physics, Chemistry, Biology, and Technology Meet”, VCH Pubisher, 14
New York.
32. 鄭雅如,1997,中孔徑分子篩MCM41 的合成與形態學之研究,國
立台灣大學化學研究所碩士論文,第12 頁。
33. J. Y. Ying, C. P. Mehnert and M. S. Wong, 1999, “Synthesis and
Applications of Supramolecular-Templated Mesoporous Materials”,
Angew Chem. Int. Ed., 38: 56.
34. S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, 1940, “On a
theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 62:
1723.
35. A. A G. J. De. Soler-Illia, C. Sanchez, B. dicte Lebeau, and, J. Patarin,
2002, “Chemical strategies to design textured materials: from
microporous and mesoporous oxides to nanonetworks and hierarchical
structures”, Chem. Rev, 102: 4093.
36. 李玉寶,2006,奈米生醫材料,五南出版社,第18-19 頁。
37. 施威任,2007,奈米級氫氧基磷灰石之合成及燒結,國立成功大學
材料科學與工程學系博士論文,第28-29 頁。
38. L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenlee, “Bonding
mechan mechanisms at the interface of ceramic prosthetic materials”,
Journal of Biomedical Materials Research, 1971, 5, 117-141.
39. W. Cao and L. L. Hench, “Bioactive Materials”, Ceramics International,
1996, 22, 493-507.
59
40. H. Dislich, 1988, “Thin Film from the Sol-Gel Process, Sol-Gel
Technology for Thin Films, Fibers, Performs, Electrons and Specialty
Shapes”, Edited by Lisa C. Klein, Noyes Publications., p.50-56.
41. H. Dislich, and P. Hinz, 1982, “History and principles of the sol-gel
process and some new multicomponent oxide coatings”, J. Non-Cryst.
Solids, 48: 11-16.
42. B. D. Cullity, 1978, “Elements of X-ray Diffraction, seconded”,
Addison-Wesley; California, USA, p.284.
43. L. J. Bellamy, 1995, The Infrared Spectra of Complex Molecules, vol.
1,3rd Ed., Chapman Hall, New York.
44. L. G. Teoh, J. S hieh, W. H. Lai and M. H. Hon, 2004, “Effects of
mesoporous structure on grain growth of nanostructured tungsten
oxide”, J. Mater. Res., 19: 2687-2693.
45. 姜定良,2003,奈米氧化錳粉末化學合成及其性質研究,國立成功
大學材料科學與工程學系碩士論文,第18-19 頁。
46. W. Cheng, E. Baudrin, B. Dunn and J. I. Zink, 2001, “Synthesis and
electrochromic properties of mesoporous tungsten oxide”, J. Mater.
Chem., 11: 92-97.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔