(3.239.33.139) 您好!臺灣時間:2021/02/27 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張雅棋
研究生(外文):Ya-Chi Chang
論文名稱:柑橘果皮、椰纖、咖啡渣及木屑對水氣及氨氣之吸持探討
論文名稱(外文):Sorption of Water and Ammonia Vapor onto Citrus peel, Coir, Coffee residue, and Sawdust
指導教授:邱春惠邱春惠引用關係
指導教授(外文):Chuen-Huey Chiu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:柑橘果皮椰纖咖啡渣氨氣吸持作用除濕劑除臭劑
外文關鍵詞:Citrus peelCoirCoffee residueAmmoniaSorptionDesiccantDeodorizer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1302
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:185
  • 收藏至我的研究室書目清單書目收藏:1
柑橘類水果具特有果香味為台灣最大宗水果,每年所產生的廢棄果皮數量大,如能提高其利用性增加其附加價值,不但可減少對化學品的依賴,還可改善環境或貯存空間的品質。本研究探討柑橘果皮、椰纖、咖啡渣及木屑對水氣及氨氣的吸持效能及機制,評估其作為乾燥劑及除臭劑之性能。分析質材之基本特性,N2-BET比表面積與孔隙體積,以掃描式電子顯微鏡 (SEM) 觀察表面結構,FT-IR及13C-CP/MAS SSNMR觀察表面官能基,並進行水氣等溫與動力試驗及氨氣吸附試驗。
有機質材的有機質含量皆高於940 g kg-1,其中果皮及椰纖 (pH4~5)比咖啡渣 (5.72) 及木屑 (7.3) 酸度高且O/C值 (0.76 ~ 0.83) 較咖啡渣及木屑 (0.6) 高擁有較多極性官能基。有機質材的BET比表面積及總孔隙體積皆很低,單點BET比表面積低於3.5 m2 g-1,總孔隙體積0.0114 ~ 0.0168 mL g-1。SEM分析除了文旦柚皮及咖啡渣皺摺多無明顯孔洞外,其它皆有8 ~ 40 μm或1 μm孔洞。FT-IR分析質材表面官能基含羥基、烷基、羰基 (羧酸、醯胺及羧酸根) 及烷氧基。由13C-CP/MAS NMR分析得柑橘果皮及椰纖的碳官能基主要為烷-氧基碳、乙縮醛碳次之及羧基碳。
有機質材對水的吸附,主要官能基為羧基碳、酚基碳及烷氧基碳,在低濕度 (20%RH) 下由於羧基碳及酚基碳表面對水的強氫鍵作用力為吸水的主要官能基,而烷氧基碳在高濕度 (大於65%RH) 下,則提供較彈性的吸附而吸附較多的水。木屑、沸石、文旦柚及檸檬皮的等溫曲線可歸類為BDDT等溫曲線的Type II;椪柑、柳橙皮、椰纖及咖啡渣則為Type III曲線。檸檬皮、沸石、咖啡渣及木屑在濕度65%的滯留現象較明顯;而椪柑皮、柳橙皮、文旦柚皮、椰纖及矽膠無滯留現象,但常用的吸濕劑-矽膠屬於Type I在低濕度即吸附大量的水氣,無法在高濕度時發揮吸濕效果,柑橘果皮及椰纖在65%RH吸水量約130 g kg-1,85%RH約300 g kg-1,在陽光下曝曬又能脫附回原來的130 g kg-1,具有易再生及再利用性,對水氣的吸附比矽膠更具選擇性。
小粒徑柑橘果皮及椰纖對水的吸附平衡時間約2小時快於大粒徑之4小時,其過程並不因具有由SEM所觀察到的孔洞有無而加速,而與大粒徑的孔隙體積略小於小粒徑有關;但木屑因大粒徑的BET比表面積及孔隙體積皆大於小粒徑,其大粒徑之吸附曲線略高於小粒徑;沸石的大、小粒徑吸附量相當,但小粒徑沸石1小時達平衡快於大粒徑的4小時,歸因於其具較多接觸面積,有助水分進入質材後擴散進入質材內填充孔洞。柑橘果皮、椰纖及咖啡渣在85%RH之脫附曲線高於吸附曲線,含較多的烷-氧基碳則會使曲線的差異愈大。椰纖及木屑皆含酚基碳,椰纖表面有大量片狀結構及覆蓋其下的孔洞,而木屑表面的管狀結構排列規則,內外管壁表面平滑、直順通暢,有助迅速吸附水分,使水氣進出速率一致。矽膠為多微孔結構具高吸水量360 g kg-1,對水吸附性強來自Si-O-Si和水產生矽醇基,即使脫附3.5小時,尚有13%水分無法脫去。
小粒徑質材在12小時對氨氣吸附,柳橙皮22.7、椰纖21.5、椪柑皮16.5、文旦柚皮14.8、咖啡渣14.8、檸檬皮10.3、木屑10.1 g kg-1,除檸檬皮與木屑吸氨效能相當,其它皆優於木屑。木屑雖與椰纖有類似的平滑結構及含酚基碳,在短時間吸附平衡,但量較低,因椰纖表面多平滑薄片且含羧基碳,且椰纖pH4.36,木屑7.04,椰纖的酸性表面有助於氨氣吸附。大粒徑質材對氨氣的吸附在初期除椪柑皮及木屑外,其餘比小粒徑的吸附量低,最後仍以椰纖最佳,椪柑皮其次,柳橙皮第三。大粒徑木屑2小時下對氨氣的吸附雖差,但12小時下吸附量卻較小粒徑高。

關鍵字:柑橘果皮、椰纖、咖啡渣、氨氣、吸持作用、除濕劑、除臭劑


Citrus fruits have their own unique flavor and are very popular in Taiwan; therefore, generous peel is produced and wasted every year. By enhancing its usage to increase the utilization and added-value, it not only can reduce chemical usage but also improve the quality of environment and storage room. The purpose of this study is to explore sorption efficiency and mechanism of water and ammonia vapor onto citrus peel, coir, coffee residue and sawdust. This study also evaluates the efficiency evaluation of materials as desiccant and deodorizer. The properties of materials, N2-BET specific surface area and porosity, surface structure image with scanning electron microscope (SEM), the functional group with FT-IR and 13C-CP/MAS SSNMR, sorption isotherms and kinetic of water vapor, and sorption of ammonia were analyzed.
The organic materials have relatively high organic matter content above 940 g kg-1. In the acidity of citrus peel and coir (pH4~5) is higher than coffee residue (5.72) and sawdust (7.3). According to the O/C value of peels and coir (0.76 ~ 0.83) is higher than coffee residue and sawdust (0.6). We obtain that citrus peel and coir have more oxygen-containing functional groups. The organic materials all have small BET specific surface area and porosity, one point BET surface areas are all below 3.5 m2 g-1, and pore volume ranging from 0.0114 to 0.0168 mL g-1. Te analysis shows that wentan peel and coffee residue have creases and no obvious pore, as to others materials have 8 ~ 40 μm or 1 μm pores. The results of FT-IR, the functional groups of organic materials are hydroxyl group, amino group, alkyl group, carbonyl (carboxylic acid, amide and carboxylate ion), alkoxy group, and aromatic hydrocarbons. The results of 13C-CP/MAS SSNMR, the carbon functional groups of citrus peel and coir are oxygen-alkyl carbon, acetal carbon and carboxyl carbon.
The functional groups on organic materials, that strongly influence the sorption processes are carboxyl carbon, phenolic carbon, and oxygen-alkyl carbon. For carboxyl and phenolic carbons, of which hydrogen bonds are stronger with water vapor at low humidity (20%). Because oxygen-alkyl carbon is flexible, it may provide more space for water materials, and the sorption capacity is high at high relative humidity. The water isotherm of sawdust, zeolite, wentan and lemon peel maybe categorized as the isotherm of BDDT type II, as to ponkan peel, liu-cheng peel, coir and coffee residue are belong to the isotherm of BDDT type III. There is obvious hysteresis for coffee residue, and sawdust but has no hysteresis for ponkan, liu-cheng, wentan peel, coir, and silica gel. The isotherm for the common use of adsorbent-silica gel is belong to type I. Silica gel easily uptake more water at low humidity, so that it can’t perform better sorption efficency at high humidity relative. The water uptake of citrus peel and coir is about 130 g kg-1 at 65%RH, and is about 300 g kg-1 at 85%RH, and it can desorp back to original 130 g kg-1 when it’s explosure under sunlight, they are not only can regenerate and reuse but also have more flexible selectivity than silica gel.
The sorption equilibrium time of citrus peel and coir with small particle is 2 hours, and is faster than 4-hour process for the large particle. The fastened process is not concerned with the pore of observed by SEM, but it seem connected that pore volume of large particle is smaller than small particle. But the sorption curve of sawdust with large particle is slightly higher than the small one because the BET specific surface area and pore volume is higher than the small one. The sorption capacity between the large particle and small parcitle of zeolite are equivalent. But the small particle takes one hour to achieved the equilibrium, it’s faster than large particle which take 4 hours instead. Because the more area contacted can help water diffuse onto material to fill pore.
The desorption kinetic curves of citrus peel, coir, and coffee residue are higher than sorption curves at 85%RH, more oxygen-alkyl carbons cause variations in curve. Coir and sawdust both have phenolic carbons, the surface of coir is a large number of sheets structure and many pores under sheets, and the surface of sawdust with regular and straight tube structure, the tube wall are smooth, helps to sorp water quickly ,and enter speed same leave. The slica gel with micropores structure, has high water capacity about 360 g kg-1, its high water uptake because Si-O-Si and water generate silanol. About 13% water can not be desorped after 3.5 hours.
The ammonia uptake of the small particle, at 12 hours, liu-cheng peel is 22.7, coir is 21.5, ponkan peel is 16.5, wentan peel is 14.8, coffee residue is 14.8, lemon peel is 10.3, and sawdust is 10.1 g kg-1. Other materials are better than sawdust except lemon peel and sawdust are colse. Althought sawdust has the similar smooth structure and phenolic carbons with coir, equibrium time of sorption is short, but sawdust has low uptake. As the result shows that coir has carboxyl carbons, and the pH of coir and sawdust is 4.36 and 7.04 respectively. It approves that the acidic surface of coir can help to sorp ammonia. At the initial stage of the ammonia uptake onto large particle is higher than small particle except ponkan peel and sawdust. At the end, coir is still the best, the ponkan peel is the 2nd., the Liu-cheng peel is the 3rd. Although, the ammonia uptake of sawdust with large particle is worst at 2 hours, but the uptake is 13.6 g kg-1 higher than small particle at 12 hours.

Key words:Citrus Peel, Coir, Coffee residue, Ammonia, Sorption, Desiccant, Deodorizer


摘 要 I
Abstract III
誌謝 VI
目錄 VII
表目錄 XI
圖目錄 XII
第1章 前言 1
1.1 研究緣由 1
1.2 研究目的 1
第2章 文獻回顧 2
2.1 吸附概述 2
2.1.1 吸附現象 2
2.1.2 吸附機制 2
2.1.3 吸附擴散模式 3
2.1.4 等溫吸附曲線 4
2.1.5 固體吸附劑 5
2.2 沸石的介紹 6
2.2.1 沸石的分類 6
2.2.2 Y型沸石 7
2.3 臭味 7
2.3.1 氨氣之逸散 8
2.3.2 氨氣之性質 8
2.3.3 氨氣之吸附 9
2.4 固體除濕 11
2.4.1 矽膠 12
2.5 有機質材的相關應用 13
2.5.1 有機質材於墊料的應用 13
2.5.2 有機質材之除臭應用 15
2.5.3 有機質材之其它應用 16
第3章 研究方法 18
3.1 吸附劑及吸附質 18
3.1.1 吸附劑之來源 18
3.1.2 吸附劑之處理 18
3.1.3 吸附質種類 22
3.2 質材基本性質分析 22
3.3 質材比表面積及孔隙分析 23
3.4 表面結構觀察及元素分析 25
3.5表面官能基測定 26
3.5.1 傅立葉紅外線光譜儀分析 26
3.5.2 13C交叉極化魔角旋轉核磁共振光譜分析 26
3.6 水的吸持實驗 29
3.6.1 微量天平吸脫附系統之操作 29
3.6.2 水氣之等溫吸脫附實驗 30
3.6.3 水氣之吸脫附動力實驗 30
3.7 氨氣之吸持實驗 31
3.7.1 氣相層析儀-熱感偵測器操作 31
3.7.2 氨氣檢量線製備 31
3.7.3 質材對氨氣之吸持試驗 31
第4章 結果與討論 33
4.1 質材的基本性質分析 33
4.2 質材之比表面積及孔隙分析 35
4.3 質材表面結構觀察及元素分析 37
4.3.1 質材之微觀表面結構 37
4.3.2 能量發散光譜儀之元素分析 42
4.4 有機質材之表面官能基分析 44
4.4.1 傅立葉紅外線光譜分析 44
4.4.2 13C交叉極化固態核磁共振光譜分析 48
4.5 水氣的吸持實驗及機制 50
4.5.1 質材對水氣的等溫吸脫附實驗 50
4.5.2 質材於相對溼度85%下對水氣的吸脫附動力試驗 56
4.6 質材對氨氣的吸持試驗 64
第5章 結論與建議 68
5.1 結論 68
5.2 建議 69
參考文獻 70
作者簡介 80


工業技術研院環境與安全衛生技術發展中心,2006,危害物質危害數據資訊資料庫http://www.cesh.itri.org.tw/intro/esafty/msds.htm,2007/12/21。
王如竹,2002,吸附式制冷,機械工業出版社,第162頁,北京。
王國鎮,楊思明,1994,「沸石觸媒之特性與應用」,化工技術,第12期,第44-51頁。
台灣咖啡協會,2008,http://www.taiwancoffee.org,2009/03/10。
谷田貝光克,2002年,炭魔法書,王蘊潔譯,漢欣文化公司,第1-157頁。
沈韶儀,蘇清全,李茂盛,張秀鑾,洪嘉膜,2001,「墊料式豬舍經營模式之探討」,畜產研究,第34卷,第2期,第171-180頁。
吳榮宗,1989,工業觸媒概論,國興出版社,新竹。
林財旺、簡宣裕,2004,「農畜產廢棄物之處理及利用現況」,合理化施肥,農業試驗所
林晉卿,劉瑞美,2003,「利用熱裂解碳化農業廢棄物以作為活性碳之可行性評估」,行政院農委會91年碳化報告。
邱春惠,邱瑞宇,葉桂君,宋俊霖,2009,「市售乾燥劑的吸水性及再生性探討」,2009環境新興污染物檢測技術與管理國際研討會,屏東,論文編號:34。
邱春惠,2003,天然有機質材對甲苯、甲基第三丁基醚及水的吸持探討,博士論文,國立中興大學,土壤環境科學系,台中。
胡盈翔,2004,孟宗竹碳燒製實務與產品性質評估,碩士論文,國立屏東科技大學,木材工業系,屏東。
科綠特,2005,「氨氣的來源及其危害性」,室內空氣門戶網,http://www.chinarrow.com/control/cug/detail_pollution.asp?n_id=679,2009/06/28。
洪蘊華,2006,物理程序對咖啡渣熱解特性之初探,碩士論文,私立輔英科技大學,環境工程與科學系,高雄。
夏良宙,1995年,「墊料或糞便潮濕和雞隻管理之關係」,飼料營養雜誌,第八期,第57-68頁。
芳心投資股份有限公司,2009,「矽膠性能」,http://www.fongsum.hk/Log/news_in.aspx?nid=10,2009/07/12。
黃慧貞,2006,土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究,博士論文,國立中央大學,環境工程研究所,桃園。
黃沛軒,2003,以Cu金屬塗覆爐石處理氨氣之研究,碩士論文,國立中山大學,環境工程研究所,高雄。
黃玄昇,2003,利用氫、矽、鋁之一維和二維固態核磁共振法研究沸石ZSM-5中之鋁原子位點及酸性位點之分佈,碩士論文,國立中山大學,化學研究所,高雄。
張怡伶,2009,「廚餘,”您丟了好東西”」,全民健康保險雙月刊,第79期,98年5月版
張立志,2005,除濕技術,化學工業出版社
陳登造,1999,「一九九八年中國東北養豬業概況」,畜牧半月刊,第59卷,第12期,第62-63頁。
賀永淑,2002,農與水產品於脫臭劑之應用,食品工程研究所,碩士論文,私立大葉大學
戴國邦,1993,「土壤化學」,能源、資源與環境,第6卷,第3期,第16-21頁。
詹士儀,2003,大氣中氨氣逸散特性之探討,碩士論文,國立屏東科技大學,環境工程與研究所,屏東。
農業統計年報,2007,行政院農委會
劉映蘭,2009,「咖啡渣用途多 除臭染色去角質」,大紀元,The Epoch, Inc.USA. http://www.epochtimes.com/b5/9/6/20/n2563938.htm,2009/07/02。
鄭宗岳,林鴻祥,1998,空氣污染防治理論與設計,文京圖書股份有限公司,台北
賴怡伶,2008,含纖維素之生物吸附劑對重金屬吸附之研究,碩士論文,,國立中央大學,環境工程所,桃園。
蔡榮哲,2000年,「柑橘類果皮加工利用」,台灣柑橘產業發展研討會專刊, 第249-259頁。
魏玫均,2005,「〈家事小幫手〉 去除異味 木炭、檸檬超好用」,http://epochtimes.com/b5/5/2/1/n799720.htm,2009/07/02。
環境濕度監測,2008,中央氣象局
鐘木壽,黃振芳,林達德,1981,「應用墊料處理鴨排泄物之模式建立與分析」,農業工程學報,第137卷,第4期,第75-88頁。
寵物主義,2008,「兔子照顧飼養資訊」,日常生活篇-便盆用的墊料,
www.petism.net/rabbit/article.php?cid=1480&artid=2473,2009/05/30。
藤原敏,嶋一徹,千葉橋三,2003,「竹炭的基本特性與調濕功能」,木材學會誌。
蘇秋華,1999,腐植酸與氮氣反應之研究,博士論文,國立中興大學,土壤環境科學系,台中。
蘇靜雁,2007,台灣柚子皮精油之抗氧化、抗菌及降血清作用,生物產業科技學系,碩士大學,私立大葉大學
Al-Kanani, T., Akochi, E., MacKenzie, A.F., Alli, I., and Barrington, S., 1992, “Organic and inorganic amendments to reduce ammonia losses from liquid hog manure,” Journal of Environmental Quality,Vol. 21, pp. 709-715.
Amblard, M., Burch, R., and Southward, B. W. L., 2000, “A study of the mechanism of selective conversion of aonia to nitrogen on Ni/γ-Al2O3 under strongly oxidizing conditions,” Catalysis Today, Vol.59, pp.365-371.
Anderson, N., Strader, R., and Davidson, R., 2003, “Airborne reduced nitrogen: ammonia emissions from agriculture and other sources,” Environment International, Vol. 29, pp. 277-286.
Baquerizo, G., Maestre, J. P., Machado, V. C., Gamisans, X., and Gabriel, D., 2009, “Long-term ammonia removal in a coconut fiber-packed biofilter: Analysis of N fractionation and reactor performance under steady-state and transient conditions,” Water Research, Vol. 43, pp. 2293-2301.
Barrington, S.F.,Schuepp, P., Capp, R., and Blanchette, J., 1990, “Peat moss to conserve swine manure nitrogen” pp.434-441. In Agriculture and food processing waste. Proc. 6th. Int. Symp. On Agric. And Food processing Wastes, Chicago, IL. December 1990. Am. Soc. Agric. Eng., St. Joseph, MI.
Boudrahem, F., Aissani-Benissad, F., and Ait-Amar, H., 2009, ”Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride,” Journal of Environmental Management, pp.1-9.
Brunauer, S., Deming, L. S., Deming, W. S., and Teller, E., 1940, “On a theory of the vander Waals adsorption of gasws,” J. Amer. Chem. Soc., Vol.62, pp.1723-1732.
Chen, B., and Chen, Z., 2009, “Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures,” Chemosphere,Vol. 76, pp. 127-133.
Chiu, C. H., Lin, T. F., and Young, C. C., 2003, “Short-Term Sorption of Toluene Vapor onto Natural Organic Materials,” Water, Air, Soil Pollution. Vol. 144, pp.233-241.
Conrad, K., and Hansen, H. C. B., 2007, “Sorption of zinc and lead on coir. Biosource Technology,” Vol. 98, pp. 89-97.
Davies, B. E., 1974, “Loss-on-ignition as an estimate of soil organic matter,” Soil Sci. Soc. Am Proc, Vol. 38, pp.150-151.
Desiraju, G. R., and Steiner, T., 1999, “The Weak Hydrogen Bond in Structural Chemistry and Biology,” Oxford University, NewYork,US.
Dubinin, M. M., 1980, “Water vapor adsorption and the microporous structures of carbonaceous adsorbents,” Carbon, Vol. 18, pp. 355-364.
Dubinin, M. M., 1989, “Fundamentals of the theory of adsorption in micropores of carbon adsorbents :Characteristics of their adsorption properties and microporous structures,” Carbon, Vol. 27, pp. 457-467.
Ducoste, J., Barlaz, M., Knappe, and D.R.U., 2004, “Adsorption of methyl tertiary - butyl ether on highsilica zeolites : effects of adsorbent characteristics and natural organic matter on adsorption isotherms by Alfred armin rossner campos. Degree of Master of Civil, construction, and environment engineering North Carolina State University.
Elzing, A., and D. Swierstra., 1993, pp.280-285, “Ammonia emission measurements in a model system of a pig house,” In M.W.A. Verstegen, L.A. den Hartog, G.J.M. Kempen and J.H.M. Metz (eds) Proceedings of the First International Symposium on Nitrogen Flow in Pig, Production and Environmental Consequences, Wageningen, Netherlands.
Gabriel, D., Maestre, J. P., Martin, L., Gamisans, X., and Lafuente, J., 2007, “Characterisation and performance of coconut fibre as packing material in the removal of ammonia in gas-phase biofilters,” Biosystems Engineering, Vol. 97, pp. 481-490.
Gregg, S. J., and Sing, K. S. W., 1982, “Adsorption, Surface Area and Porosity,” 2 nd. Ed., Academic press, New York.
Gonzalez, M. H., Araujo, G. C. L., Pelizaro, C. B., Menezes, E. A., Lemos, S. G., Sousa, G. B., and Nogueira, A. R. A., 2008, “Coconut coir as biosorbent for Cr (VI)removal from laboratory waste water,” Journal of Hazardous Materials, Vol. 159, pp. 252-256.
Flood, E.A., 1967, The Solid-Gas Interface, Marcel Dekker Inc. New York.
Halsey, G. D., 1948, “Physical adsorption on non-uniform surfaces,” J. Chem. Phys., Vol.16, pp.931-945.
Hameed, B. H., Mahmoud, D. K., and Ahmad, A. L., 2008, “Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids and Surface A: Physicochem,” Eng. Aspects, Vol. 316, pp.78-84.
Hatcher, P. G., Breger, I. A., Maciel, G. E., and Szeverenyi, N. M., 1985, “Geochemistry of Humin” pp. 286-301, In G-R-Aiken et al. (eds.), Humic Substance in soil, Sediment, and Water, John Wiley & Sons, New York.
Hatcher, P. G., Spiker, E. C., and Orem, W. H., 1986, “Organic geochemical studies of the humification process in low-moor peat”, pp.203, in C. H. Fuchsman (ed.), Peat and Water: Aspects of Water Retention and Dewater in Peat, Elsevier Applied Science, London and New York.
Hirata, M., Kawasaki, N., Nakamura, T., Matsumoto, K., Kabayama, M., Tamura, T., and Tanada, S., 2002, “Adsorption of Dyes onto Carbonaceous Materials Produced from Coffee Grounds by Microwave Treatment,” J. Colloid Interface Sci., Vol. 254, pp. 17-22.
Hirata, M., Kawasaki, N., Nakamura, T., Bunei, R., Bunei, R., and Tanada, S., 2003, “Removal of Formaldehyde by Surface-Modified Carbonaceous Materials,” Hyomen Kagaku, Vol. 24, pp. 417-422.
House Rabbit Society, “Litter Training” , http://www.rabbit.org,Accessed 26 May 2009
Iqbal, M., Saeed, A., and Akhtar, N., 2002, “Petiolar felt-sheath of plam: a new biosorbent for the removal of heavy metals from contaminated water,” Bioresource Technology, Vol. 81, pp. 151-153.
Iyobe, T., Asada, T., Kawata, K., and Oikawa, K., 2004, “Comparson of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon,” Journal of Health Science, Vol. 50, No. 2, pp. 148-153.
Kasi, D., Pu, Y., Foston, M., Muzzy, J., and Ragauskas, A., 2009, “Cross – polarization / magic spinning (CP/MAS) 13C Nuclear magnetic resonance (NMR)analysis of chars from alkaline-treated pyrolyzed softwood,” Energy & Fuels, Vol.23, No.1, pp.498-501.
Kawasaki, N., Kinshita, H., Oue, T., Nakamura, T., and Tanada, S., 2006, ”Deodorization of Ammonia by Coffee Grounds”, Journal Oleo Science, Vol.55, No.1, pp.31-35.
Kumar, K. V., and Porkodi, K., 2005, “Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel,” Journal of Hazardous Materials. Vol. 138, pp. 633-635.
Ludington, A. T., Sobel, A. T., and Gormal, B., 1971, “Control of odors through manure management Trans,” ASAE, Vol.14, NO.4, pp.771-774.
Lowell, S., and Shields, J. E., 1984, “Pore analysis by adsorption”, in Power Surface Area and Porosity, pp.58-68, Chapman and Hall, New York.
McCusker, L.B. and C Baerlocher. 2001. “Zeolite Structures”. In Introduction to Zeolite Science and Practice, 2nd Completely Revised and Expanded Edition, van Bekkum, H., 63 E.M. Flanigen, P.A. Jacobs, and J.C. Jansen, eds. Elsevier Science, Amsterdam, pp. 37-67.
McCrory, D. F., and Hobbs, P. J., 2001, “Additives to Reduce Ammonia and Odor Emissions from Livestock Wastes: A Review,” Poblished in J. Qual, Vol. 30, pp. 345-355.
McBain, V. W., 1935, “An explanation of hysteresis in the hydration and dehydration of gels,” J. Amer. Chem. Soc, Vol. 57, pp.699-700.
Minamisawa, M., Minamisawa, H., Yoshida, S., and Takai, N., 2004, “Adsorption behavior of heavy metals on biomaterials,” J. Agr. Food Chem., Vol. 52, pp. 5606-5611.
Miner, J. R., Raja, S.N., and McGregor, W., 1997, Finely ground zeolite as an odour control aadditive immediately prior to sprinkler application of liquid dairy manure, pp.717-720, In Proc. Of the Int. Symp. On Ammonia and Odour Eissions from Animal Production, Vinkeloord, the Netherlands. 6-10 Oct. 1997. NVTL, Rosmalen, the Netherlands.
Mohamed H., Amir, S., and Revel, J.C., 2005, “Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR,” Process Biochemistry, Vol. 40, pp. 2615-2622.
Naiya, T. K., Chowdhury, P., Bhattacharya, A. K., and Das, S. K., 2009, “Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn (II) and Cd (II)ions from aqeous solutions,” Chemical Engineering Journal, Vol. 148, pp. 68-79.
Nakaue, H. S., Koelliker, J. K., and Pierson, M. L., 1981, “Studies with clinoptilolite in poultry: II. Effect of feeding broilers and the direct application of clinoptilolite zeolite on clean and reused broiler litter on broiler performance and house environment,” Poul. Sci., Vol. 60, pp. 1221-1228.
Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M., and Ranganathan, K., 1996, “Removal of dyes from aqueous solutions by cellulosic waste orange peel,” Biosource Technology, Vol. 57, pp. 37-43.
Oliveira, W. E., Franca, A. S., Oliveira, L. S., and Rocha, S.D., 2008, “Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous,” Journal of Hazardous Materials, Vol152, pp.1073-1081.
Patni, N. K. 1992, “Effectiveness of manure additives.” Report for Ontario pork producers. The centre for Food and Animal Res., Research Branch, Agriculture Canada, Central Exl. Farm, Ottawa, ON, Canada.
Pasquali, L. C.E. and Herrera, H., 1997, “Pyrolisis of lignin and IR analysis of residue," Termochim. Acta, Vol. 239, pp. 39-46.
Parab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U.S., and Sudersanan, M., 2007, “Esterified coir pith as an adsorbent for the removal of Co (II) from aqueous solution,” Bioresource Technology, Vol. 99, pp. 2083-2086.
Pavan, J. A., Lima, I. S., Lima, E., Airoldi, C., and Gushikem, Y., 2006, “Use of ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions,” Journal of Hazardous Materials, Vol. B137, pp. 527-533.
Pavan, F. A., Mazzocato, A. C., Jacques, R. A., and Dias, S. L. P., 2008, “Ponkan peel: A potential biosorbent for removal of Pb(II) ions from aqueous solution,” Biochemical Engineering Journal, Vol. 40, pp. 357-362.
Pfenninger, A. 1998. “Manufacture and Use of Zeolites for Adsorption Processes”. In Molecular Sieves: Science and Technology, vol. 2, Karge, H.G. and J. Weitkamp, eds. Springer-Verlag, Berlin, pp. 163-198.
Pino, G. H., Mesquita, M. S., Torem, M. L., and Pinto, G. A. S., 2006, “Biosorption of cadmium by green coconut shell powder,” Materials Engineering, Vol. 19, pp. 380-387.
Reid, R. C., Prausnitz, J. M., and Poling, B. E., 1987, Appendix B. pp.733-734. The Properties of Gases and Liquids. 4th ed. McGraw-Hill, New York, US.
Ruthven, D. M., 1984, Priinciples of Adsorption and Adsorption Process, John Wiley & Sons, New York.
Sherwood, T. K., Pigford, R. L., and Wilke, C. R., 1975, Mass Transfer, McGraw-Hill, New York.
Sing, K. S. W., Everest, D. H., Hual, R. A. W., Moscou, L., Pientti, R. A., Rouquerol, J., and Siemieniewska, T., 1985, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure Appl. Chem., Vol.57, pp. 603-619.
Tillman, A.D., and K.S. Sidhu., 1969, “Nitrogen metabolism in ruminants: Rate of ruminal ammonia production and nitrogen utilization by ruminants—A review,” J. Anim. Sci.,Vol: 28, pp. 689-697.
Topp, G.C., 1993, “Soil water contenr,” pp.541-543. In M.R. Carter (ed.) Soil Sampling and Methods of Analysis. CRC press, US.
Weast, R. C., and Astle, M. J., 1978-1979, “Handbook of chemistry and physics-59th.ed.,” pp.F259, In Infrared Correlation hart No.4 (Con’t), CRC Press, Inc. Florida
Weber, W. J., McGinley, P. M., and Katz, L. E., 1991, “Sorption phenomena in subsurface system:Concepts, models and effects on Wershaw, R. L., 1993, “Model for humus in soil and sediments,” Environmental Science & Technology, Vol. 27, pp. 814-816.
contaminant fate and transport,” Water Research. Vol. 25, pp. 499-528.
Willian H. B., and Thomas p., 2005, “Introduction to orangic chemistry-3rd ed.,” pp.304-328. In Infrared Spectroscopy Chap.11, John Wiley & Sons, Inc. USA.
Witter, E., and Kirchmann, H., 1989, “Peat, zeolite and basalt as adsorbents of ammoniacal nitrogen during manure decomposition,” Plant Soil., Vol. 115, pp. 43-52.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔