(3.235.108.188) 您好!臺灣時間:2021/03/07 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴雨潺
研究生(外文):Yu-Chan Lai
論文名稱:人工及實際TFT-LCD鉻蝕刻廢液中Ce(IV)之電再生
論文名稱(外文):Electroregeneration of Ce(IV) in simulated and real spent Cr-etching solutions from TFT-LCD industry
指導教授:黃國林黃國林引用關係
指導教授(外文):Kuo-Lin Huang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:54
中文關鍵詞:液晶面板鉻蝕刻廢液Ce(IV)電再生Ce(IV)產率電流效率
外文關鍵詞:TFT-LCDSpent Cr-etching solutionCe(IV) electro-regenerationCe(IV) yieldCurrent efficiency
相關次數:
  • 被引用被引用:4
  • 點閱點閱:378
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
液晶面板(TFT-LCD)是台灣經濟發展上的主要產業之一,但該產業所產生的廢棄物量每年約兩萬噸。其中,廢鉻蝕刻廢液占了約23%,廢鉻蝕刻廢液主要成分為硝酸、硝酸銨鈰,具有回收價值,本研究主要以電解方法於人工與實際廢液中回收Ce(IV),且探討操作參數之影響。研究結果顯示在未控溫、陽極鉑2.25cm2、陰極石墨1cm2、電流2A、雙槽分隔膜為Nafion 117,陽極液0.2 MCe3+/4 MHNO3(100 mL),陰極液4 MHNO3等條件下,Ce(IV)產率與電流效率各為94%與15%。相同條件下,定溫70℃,Ce(IV)產率與電流效率各為96%與15%。Ce(III)在鉑電極上氧化為Ce(IV)之活化能為11.81 kJ/mol。另外,在人工廢液中,單獨添加NH4+(≦ 0.4 M),可以增加Ce(IV)產率。將上述條件應用在實際鉻蝕刻廢液,發現未控溫時,Ce(IV)產率與電流效率分別為82%與16%;定溫70℃時,Ce(IV)產率與電流效率則分別為90%與18%。
The TFT-LCD industry has been one of important industries for Taiwan economical development, but it annually generates about 20000 ton wastes of which the spent Cr-etching solutions account for ~23%. The major components of spent Cr-etching solutions are nitric acid and cerium ammonium nitrite that deserve to be recycled. This study explored the electrolytic recovery Ce(IV) from Ce(III) in spent Cr-etching solutions and the effects of operating parameters on Ce(IV) regeneration in simulated and real spent Cr-etching solutions. The results show that the Ce(IV) yield and current efficiency (CE) were 94% and 15%, respectively, when temperature was not controlled at the conditions of Pt anode = 2.25 cm2, graphite cathode = 1 cm2, current = 2 A, in a divided cell with a Nafion 117 separator, the anolyte = 0.2 M Ce3+/4 MHNO3 (100 mL), and the catholyte = 4 M HNO3. At similar conditions with temperature control (70oC), the Ce(IV) yield and current efficiency (CE) were 96% and 15%, respectively. The activation energy for Ce(III) electrooxidation to Ce(IV) on Pt was 11.81 kJ/mol. The presence of NH4+ (≦ 0.4 M) increased Ce(IV) yield. When the above operating conditions were used for the real spent Cr-etching solution without temperature control, the Ce(IV) yield and current efficiency (CE) were 82% and 12%, respectively, whereas they were they were 90% and 18%, respectively, at 70oC.
目錄
摘要..............................................................................................................I
Abstract II
謝誌...........................................................................................................IV
目錄.............................................................................................................V
表目錄 .......................................................................................................IX
圖目錄 ........................................................................................................X
第1章 前言 1
1.1 回收技術 1
第2章 文獻回顧 3
2.1 電化學基本原理 3
2.1.1 電荷轉移 3
2.1.2 電化學反應 4
2.1.3 法拉第定律 5
2.2鈰 6
2.2.1基本性質 6
2.2.2應用 6
第3章 實驗設備與方法 8
3.1 實驗原理 8
3.2 實驗流程 9
3.3 藥品與材料 11
3.4儀器設備 12
3.4.1 自動電位滴定儀 12
3.4.2 電化學分析儀 13
3.5鹽橋配置 15
3.6 Nafion 15
3.7 計算公式 16
3.7.1 Ce(IV)產率 16
3.7.2 電流效率(CE) 16
3.7.3回歸線 17
第4章 結果與討論 18
4.1電解槽型式 18
4.1.1單槽Ce(IV)產率與電流效率 18
4.1.2雙槽 20
4.1.2.1鹽橋Ce(IV)產率與電流效率 20
4.1.2.2陽極面積改為2.25 cm2的Ce(IV)產率與電流效 率............................................................................22

4.1.2.3分隔膜為Nafion 117的Ce(IV)產率與電流效率............................................................................23
4.2雙槽Nafion 117實驗參數 25
4.2.1陰極液為4 M HNO3的Ce(IV)產率與電流效率 25
4.2.2管柱直徑為30 mm的Ce(IV)產率與電流效率 27
4.2.3分隔膜:212之Ce(IV)產率與電流效率 29
4.2.4陽極面積與電流 30
4.2.4.1相同電流下白金1 cm2與2.25 cm2之差異 30
4.2.4.2不同電流下白金1 cm2與2.25 cm2之差異 31
4.2.5電流密度 34
4.2.6電流為1、2 A 35
4.2.7陰極面積為鈦4 cm2 37
4.2.8陰極為石墨1 cm2 38
4.2.9 溶液體積為100 mL 39
4.2.10 陽極為DSA之Ce(IV)產率與電流效率 41
4.2.11不同溫度下之Ce(IV)產率、電流效率與活化能計算.. 42
4.2.12 NH4+濃度之影響 45


4.3 TFT-LCD鉻蝕刻廢液在不同溫度下之Ce(IV)產率與電流效 率 47
第5章 結論與建議 49
5.1 結論 49
5.2 建議 50
作者簡介 54












表目錄
表1-1 光電產業廢棄物種類及廢棄量 1
表2-1 法拉第參數說明 5
表3-1藥品 11
表3-2 儀器設備與出場廠商 12
表4-1 單槽實驗條件 18
表4-2 鹽橋實驗條件 20
表4-3管柱30 mm陰陽極溫度與pH 28
表4-4不同溫度之k值 43
表4-5 不同NH4+濃度之k值 45








圖目錄
圖2-1 電荷轉移 3
圖3-1 反應槽示意圖 9
圖3-2 實驗流程 10
圖3-3 滴定終點曲線 13
圖3-4白金在1N硫酸中之 CV圖 14
圖4-1 單槽 Ce(IV)產率與電流效率,回歸線y = 1 - exp(-kt) 19
圖4-2鹽橋Ce(IV)產率與電流效率,回歸線y = 1 - exp(-kt) 21
圖4-3陽極為白金2.25 cm2,陰極為鈦1 cm2,分隔膜為鹽橋的 Ce(IV)產率與電流效率,回歸線y = 1 - exp(-kt) 22
圖4-4陽極為白金1 cm2,陰極為鈦1 cm2,電流0.3 A ,分隔膜 為Nafion 117之Ce(IV)產率與電流效率,回歸線 y = 1 - exp(-kt) 24
圖4-5陽極為白金1 cm2,陰極為鈦1 cm2,電流0.3 A,陰極液為 4 MHNO3的Ce(IV)產率與電流效率,回歸線 y = 1 - exp(-kt) 26
圖4-6陽極為白金1 cm2,陰極為鈦1 cm2,電流0.3 A,管柱直徑 為30 mm的Ce(IV)產率與電流效率,回歸線 y = 1 - exp(-kt) 27


圖4-7 陽極為白金1 cm2,陰極為鈦1 cm2,電流0.3 A,分隔膜為 Nafion 212的Ce(IV)產率與電流效率,回歸線 y = 1 - exp(-kt) 29
圖4-8陽極為白金2.25 cm2,陰極為鈦1 cm2,電流為0.3 A之 Ce(IV)產率與電流效率,回歸線y = 1 - exp(-kt) 32
圖4-9陽極為白金1 cm2,陰極為鈦1 cm2,電流0.5 A的Ce(IV)產 率與電流效率,回歸線y = 1 - exp(-kt) 32
圖4-10陽極為白金2.25 cm2,陰極為鈦1 cm2,電流為0.5 A之 Ce(IV)產率與電流效率,回歸線y = 1 - exp(-kt) 33
圖4-11白金在0.2 MCe3+/4 MHNO3之CV圖,掃描速率0.1V/s 33
圖4-12電流密度,(a)0.3 A/cm2(b)0.13 A/cm2(c)0.08 A /cm2 (d)0.5 A/cm2(e)0.22 A/cm2(f)0.13 A/cm2 34
圖4-13陽極為白金2.25 cm2,陰極為鈦1 cm2,電流1 A的Ce(IV) 產率與電流效率,回歸線y = 1 - exp(-kt) 36
圖4-14陽極為白金2.25 cm2,陰極為鈦1 cm2,電流2 A的Ce(IV) 產率與電流效率,回歸線y = 1 - exp(-kt) 36
圖4-15陽極為白金2.25 cm2,陰極為鈦4 cm2,電流2 A之Ce(IV) 產率與電流效率,回歸線y = 1 - exp(-kt) 37

圖4-16陽極為白金2.25 cm2,陰極為石墨1 cm2,電流2 A之 Ce(IV)產率與電流效率,回歸線y = 1 - exp(-kt) 38
圖4-17陽極為白金2.25 cm2,陰極為石墨1 cm2,電流2 A,分隔 膜為Nafion 117,體積100 mL,Ce(IV)產率與電流效率, 回歸線y = 1 - exp(-kt) 40
圖4-18陽極為DSA,陰極為石墨1 cm2,電流2 A,分隔膜為 Nafion 117,陽極液為0.2 MCe3+/4 MHNO3,陰極液為 4 MHNO3,體積100 mL,Ce(IV)產率與電流效率,回歸線 y = 1 - exp(-kt) 41
圖4-19溫度為未控溫與30、60、70℃之Ce(IV)產率與電流效率, 回歸線y = 1 - exp(-kt) 43
圖4-20溫度為80℃之Ce(IV)產率與電流效率,回歸線 y = 1 - exp(-kt) 44
圖4-21陽極液添加NH4+,NH4+濃度為未添加、0.02、0.2、0.4、 0.6 M,溫度70℃之Ce(IV)產率與電流效率,回歸線y = 1 - exp(-kt) 46
圖4-22 TFT-LCD鉻蝕刻廢液,陽極白金2.25 cm2,陰極為石墨 1 cm2,電流2 A,溫度為未控溫之Ce(IV)產率與電流效率, 回歸線y = 1 - exp(-kt) 48


圖4-23 TFT-LCD鉻蝕刻廢液,陽極白金2.25 cm2,陰極為石墨 1 cm2,電流2 A,溫度為70℃,Ce(IV)產率與電流效率之 回歸線y = 1 - exp(-kt) 48


林修正等(2005) 電化學科技辭典。五南圖書出版社。
吳啟章(2002) 電化學原理與方法。五南圖書出版社。
黃榮茂等人(1987) 化學化工百科辭典。曉園出版社。
經濟部工業局(2003)。光電業資源化應用技術手冊。
賴文輝(2006) 分析化學。新文京開發出版社。

A.J. Bard and L. R. Faulkner, Electrochemical Methods-Fundamentals and Applications,2nd ed., John Wiley & Sons, New York 2001.

Chen, T. S., Yeh, K. J. C., Huang, K. L., 2008, “Anion effects on the electrochemical regeneration of Ce(IV) in nitric acid used for etching chromium,” J. Hazard. Mater., Vol. 152, pp. 922-928.

Chen, T. S., Huang, K. L., Yeh, K. J. C., 2009, “Kinetic and mass transfer parameters for Ce(III) electro-oxidation in nitric acid with/without anion impurities,” J. Electrochem. Soc., Vol. 156, pp. E69-E74.

Du Pont, DuPont™ Nafion® membranes and dispersion http://www2.dupont.com/FuelCells/en_US/assets/downloads/dfc201.pdf. Accessed 01 July 2009.

Fang, B., Iwasa, S., Wei, Y., Arai, T., Kumagai, M., 2002, “A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application,” Electrochim. Acta, Vol. 47, pp. 3971-3976.

GEF, Report of United Nations Environmental Programme for 2004. January 15, 2004. On review of emerging innovative technologies for the destruction and decontamination of POPs and the identification of promising technologies for
use in developing countries. http://www.basel.int/techmatters/review_pop_feb04.pdf. Accessed 01 July 2009.
Juang, R. J., Wang, S. W., 2000, “Metal recovery and EDTA recycling from simulated washing effluents of metal contaminated soils,” Wat. Res., Vol. 34, pp. 3795-3803.

Lee, W. J., Park, H. S., Lee, S. I., and Sohn, H. C., 2004, “Effects of ceric ammonium nitrate (CAN) additive in HNO3 solution on the electrochemical behaviour of ruthenium for CMP processes,” J. Appl. Electrochem., Vol. 34, pp. 119-125.

Paulenova, A., Creager, S. E., Navratila, J. D., Wei, Y., 2002, “Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions,” J. Power Sources, Vol. 109, pp. 431-438.

Pletcher, D., and Valdes, E. M., 1987, “Studies of the Ce(III)/Ce(IV) couple in multiphase systems containing a phase transfer reagent−I. conditions for the extraction of Ce(IV) and electrode kinetics,” Electrochim. Acta, Vol. 33, pp. 499-507.

Raju, T., Ahmed Basha, C., 2005, “Electrochemical cell design and development for mediated electrochemical oxidation Ce(III)/Ce(IV) system,” Chem. Eng. J., Vol. 114, pp. 55-65.

Sedneva, T. A., 2005, “Cerium(III) electro-oxidation in nitric acid solutions of rare-earth elements,” Russ. J. Appl. Chem., Vol. 78, pp. 907-911.

Spotnitz, R. M., Kreh, R. P., Lundquist, J. T., Press, P. J., 1990, “Mediated electrosynthesis with cerium(IV) in methanesulphonic acid,” J. Appl. Electrochem., Vol. 20, pp. 209-215.

Vijayabarathi, T., Velayutham, D., Noel, M., 2001, “Influence of aromatic reactants and products involved in the two stage electrochemical oxidation on the votammetric behaviour of Ce(III)/Ce(IV) redox couple,” J. Appl. Electrochem., Vol. 31, pp. 979-986.
W. Stumm and J. J. Morgan, Aquatic Chemistry, John Wiley & Sons, 1981.

Zhang, G., Yang, F., Yang, W., 2002, “The effect of polypyrrole-bound anthraquinonedisulphonate dianion on cathodic reduction of oxygen,” Reactive & Functional Polymers, Vol. 67, pp. 1008-1017.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔