(54.236.58.220) 您好!臺灣時間:2021/03/06 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳羿辰
研究生(外文):Yi-Chen Chen
論文名稱:半導體廠周界大氣氣膠特性研究
論文名稱(外文):Characterization of Ambient Aerosol in the Vicinity of Semiconductor Plants
指導教授:陳瑞仁陳瑞仁引用關係
指導教授(外文):Shui-Jen Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:半導體氣膠碳成分水溶性離子
外文關鍵詞:semiconductoraerosolcarbon contentswater-soluble ions
相關次數:
  • 被引用被引用:5
  • 點閱點閱:346
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
為瞭解半導體廠周界大氣氣膠特性,本研究於2008年9月至2009年6月間,在南部某半導體廠為主之科學園區中心約48.9 m高樓頂與地面、周界東北側(5 m)、西南側(16 m高)及園區外背景測點,每季以分道採樣器(Dichot)採集日(08:00~17:00)、夜間(17:00~翌日8:00)大氣粗、細懸浮微粒,分析微粒上水溶性離子(F-、Cl-、Br-、NO3-、SO42-及PO43-、Na+、NH4+、K+、Mg2+、Ca2+)及碳成分(EC及OC),以瞭解以半導體廠為主之科學園區大氣氣膠特性。研究結果顯示:採樣期間各採樣點大氣PM10濃度由高至低依序分別為周界西南側(80.8±27.5 μg/m3)>園區中心樓頂(68.4±23.1 μg/m3)>背景A (66.4±29.4 μg/m3)>周界東北側(59.4±20.6 μg/m3)>地面測點(53.0±16.0 μg/m3)>背景B (41.4±11.3 μg/m3);園區中心樓頂大氣PM2.5/PM10值(0.61±0.10)明顯地較其周界東北側及西南側之值(分別為0.52±0.09及0.49±0.09)高,且園區中心樓頂大氣PM10約有近六成是由細微粒(PM2.5)所貢獻。園區中心及其附近周界大氣PM2.5之組成中約有將近一半(0.44~0.49)是水溶性離子,而以園區中心樓頂之值(0.49±0.07)最高;反之,其大氣粗微粒(PM2.5-10)上水溶性離子含量則僅佔三成左右(0.26~0.31)。園區中心樓頂大氣PM2.5上F-、Cl-、Br-、SO42-與NH4+及其PM2.5-10上PO43-濃度均明顯地較其附近周界(東北側、西南側)及背景點之值高,推測其可能與園區內半導體製程使用原物料之排放有關。園區中心樓頂、地面及其附近周界大氣PM2.5中約有35%(0.33~0.36)是碳成分(EC+OC),而PM上之EC及OC主要分佈在細微粒(PM2.5)上,且粗、細微粒上OC含量(佔23%)約為其EC值(佔10%)之2倍以上。科學園區地面大氣NMHC濃度明顯地較附近環保署空氣品質監測站之監測值高(1.5倍以上),此可能與園區內半導體製程使用之有機溶劑及其逸散之揮發性有機物(VOCs)有關。
This study was conducted from September, 2008 to June, 2009 at a semiconductor plant in a science park in southern Taiwan to understand the characteristics of ambient atmospheric aerosol in the vicinity of semiconductor plants. There were six sampling sites: ground, roof of the plant building (48.9 m high), northeast ambient (5 m high), southwest ambient (16 m high), and outside of Science Park (background). Dichot samplers were used daytime (08:00~17:00) and nighttime (17:00~8:00 the second day) to collect the coarse and fine aerosols quarterly. Besides, water-soluble ions of the particles (F-, Cl-, Br-, NO3-, SO42-, PO43-, Na+, NH4+, K+, Mg2+, Ca2+) and carbon contents (EC and OC) were analyzed. The results showed that during the studied period, the PM10 concentration from high to low was southwest ambient (80.8±27.5 μg/m3) > top of the plant building (68.4±23.1 μg/m3) > background A (66.4±29.4 μg/m3) > up-wind ambient (59.4±20.6 μg/m3) > ground site (53.0±16.0 μg/m3) > background B (41.4±11.3 μg/m3). The PM2.5/PM10 ratios at the plant building roof (0.61±0.10) were higher than those at the ambient northeast and southwest sites (0.52±0.0 and 0.49±0.09, respectively). About 60% of the aerosols on the roof of plant building were fine-sized particles. About half (0.44–0.49) of atmospheric PM2.5 at the park center (plant building top and ground sites) and northeast/southweat ambient were water-soluble ions and the ratio was the highest on the top of plant building (0.49±0.07). However, only about one third (0.26–0.31) of coarse aerosols (PM2.5-10) were water-soluble ions. The concentrations of F-, Cl-, Br-, SO42-, and NH4+ of PM2.5 and PO43- of PM2.5–10 on the plant building roof were significantly higher than those of northeast/southwest ambient and background. This phenomenon was related to the emission of materials used in the semiconductor plants. The carbon content (EC + OC) of PM2.5 was about 35 % (0.33–0.36) at the park center and ground and northeast/southwest ambient. Moreover, the particulate EC and OC were primarily in fine particles (PM2.5). The OC content (23%) was double higher than that of EC (10%) for both coarse and fine particles. The ground atmospheric NMHC concentrations in the science park were greater than those recorded by an air quality monitoring station of Taiwan EPA. This phenomenon is possibly related to the organic solvents used and volatile organic compounds (VOCs) fugitive in semiconductor manufacturing processes.
目錄
摘要 I
Abstract III
謝誌 V
表目錄 X
圖目錄 XII
第1章 前言1
1.1 研究緣起1
1.2 研究目的1
第2章 文獻回顧3
2.1 半導體業介紹3
2.1.1 半導體業製程3
2.1.2 半導體業製程所需之原料5
2.1.3 半導體業空氣污染物排放特性6
2.1.4 半導體業相關法規標準7
2.1.5 半導體業空氣污染物排放特性之相關研究8
2.2 光電業介紹11
2.2.1 光電業製程及其污染來源11
2.2.2 光電業製程所需之原料13
2.2.3 光電業法規標準15
2.3 大氣懸浮微粒15
2.3.1 懸浮微粒之定義及其來源15
2.3.2 懸浮微粒之特性18
2.4 懸浮微粒對人體健康及環境之危害20
2.4.1 懸浮微粒對人體健康之影響20
2.5 懸浮微粒上水溶性離子21
2.5.1 微粒上水溶性離子成份之來源21
2.5.2 微粒上水溶性離子成份之特性22
2.5.3 硫酸鹽及硝酸鹽之轉化現象23
2.6 微粒上碳成份25
2.6.1 微粒上碳成份之來源25
2.6.2 微粒上碳成份之特性25
2.6.3 二次有機碳推估(OCsec)27
第3章 研究方法29
3.1 採樣規劃29
3.1.1 採樣點之環境描述29
3.2 採樣設備32
3.2.1 分道採樣器(Dichot)32
3.2.2 空氣品質監測車34
3.3 微粒成分分析36
3.3.1 懸浮微粒質量濃度秤重分析36
3.3.2 微粒上水溶性離子分析 36
3.3.3 微粒上碳成分分析37
3.4 品質保證與品質控制38
3.4.1 採樣方法之品保與品管 38
3.4.2 分析方法之品保與品管 43
第4章 結果與討論47
4.1 半導體廠中心及附近周界大氣微粒特性及季節差異47
4.1.1 各採樣點大氣懸浮微粒質量濃度47
4.1.2 各季大氣懸浮微粒濃度50
4.1.3 日夜大氣懸浮微粒濃度55
4.2 半導體廠周界大氣微粒上水溶性離子58
4.2.1 微粒上水溶性離子濃度及含量58
4.2.2 微粒上硫酸鹽及硝酸鹽之轉化77
4.3 半導體廠周界大氣微粒上碳成分80
4.3.1 微粒上碳成分濃度及含量80
4.3.2 大氣微粒上二次有機碳之推估84
4.4 科學園區氣狀污染物之監測濃度86
4.4.1 SO2監測濃度86
4.4.2 CO監測濃度 88
4.4.3 O3監測濃度 90
4.4.4 NO監測濃度 92
4.4.5 NO2監測濃度94
4.4.6 NOX監測濃度96
4.4.7 THC監測濃度98
4.4.8 NMHC監測濃度100
第5章 結論與建議102
5.1 結論 102
5.2 建議 103
參考文獻 104
附錄112
作者簡介116


參考文獻
Appel, B. R., Hoffer, E. M., Kothny, E. L., Wall, S. M., Haik, M. and Knights, R. L., 1979, “Analysis of carbonaceous material in Southern California atmospheric aerosols,” Environ. Sci. and Technol., Vol. 13, pp. 98-104.
Brook, J. R., Dann, T. F. and Rurnett, R. T., 1997, “The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian lacations,” J. Air and Waste Manage., Vol. 47, pp. 2-19.
Cadle, S. H., Groblicki, P. J. and Mulawa, P. A., 1983, “ Problems in the sampling and analysis of carbon particulate.” Atmos. Environ., Vol 17, pp. 553-600.
Calvert, J. G. and Stockwell, W. R., 1983, “ Acid generation in the troposphere by gas-Phase chemistry.” Environ. Sci. and Technol., Vol 17, pp. 428-443.
Castro, L. M., Pio, C. A., Harrison, R. M. and Smith, D. J. T., 1999 “Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations,” Atmos. Environ., Vol. 33, pp. 2771-2781.
Chein, H. M. and Chen, T. M., 2003, “Emission characteristics of volatile organic compounds from semiconductor manufacturing,” J. Air and Waste Manage., Vol. 53, No. 8, pp. 1029-1036.
Chein, H. M., Chen, T. M., Tsai, C. J. and Huang, C. C., 2004, “Inorganic acid emission factors of semiconductor manufacturing processes,” J. Air and Waste Manage., Vol. 54, pp. 218-228.
Chen, S. Hsieh, J., L., Tsai, T. C. C. and Fang, G. C., 2003, “Characterization of atmospheric PM10 and related chemical species in southern Taiwan during the episode days,” Chemosphere, Vol. 53, No. 1, pp. 9-41.
Chow, J. C., Watson, J. G., Fujuta, E. M., Lu, Z. and Lawson, D. R., 1994,“Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study,” Atmos. Environ., Vol. 28, No. 12, pp. 2061-2080.
Chow, J. C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., Thuillier, R. H. and Magliano, K., 1996, “Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX,” Atmos. Environ., Vol. 30, No. 12, pp. 2079-2112.
Colbeck, I. and Harrison, R. M., 1984, “Ozone secondary aerosol visibility relationships in North-West England,” Sci. Total Enviro., Vol. 34, pp. 87-100.
Dan, M., Zhuang, G., Li, X., Tao, H. and Zhuang, Y., 2004, “The characteristics of carbonaceous species and their sources in PM2.5 in Beijing,” Atmos. Environ., Vol. 38, No. 21, pp. 3443-3452.
Eom, Y. S., Hong, J. H., Lee, S. J., Lee, E. J., Cha, J. S. and Lee, D. G., 2006, “Emission factors of air toxics from semiconductor manufacturing in Korea,” J. Air and Waste Manage., Vol. 56, pp. 1518-1524.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K. and Rau, J. A., 1986, “Characteristics of atmospherics organic and elemental carbon particle concentrations in Los Angeles,” Environ. Sci. and Technol., Vol. 20, pp. 580-589.
Gehrig, R. and Bushmann, B., 2003, “Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data,” Atmos. Environ., Vol.37, pp.2571-2580.
Harrison, R., M. and Jones, A., M., 2005, “Interpretation of particulate elemental andorganic carbon concentrations at rural, urban andkerbsid e sites,”Atmos. Environ., Vol.39, pp. 7114-7126.
He, Z., Kim, Y. J., Ogunjobi, K. O., Kim, J. E. and Ryu, S. Y., 2004, “Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002,” Atmos. Environ., Vol.38, pp. 1795-1800.
Hinds, W. C., 1982, Aerosol technology: properties, behavior, and measurement of airborne particles, pp.6-49. John Willey & Sons, Inc., New York.
Hung, I. F., Tsai, C. J. and Huang, S. H., 2005, “Spatial temporl distribution of volatie organic compounds around an industrial park of Taiwan,” Aerosol and Air Quality Research., Vol. 5, pp. 141-153.
Husar, R. B., Patter, D. E., Huser, J. D., Gillani, N. V. and Wilson, W. E., 1977, “Sulfur budget of a power plant plume,” Atmos. Environ., Vol. 12, pp. 1745-1756.
Kaneyasu, N., Ohta, S. and Murao, N., 1995, “Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan,” Atmos. Environ., Vol.29, pp. 1559-1568.
Jacobson, M. Z., 2001, “Strong radiative heating due to themixing state of black carbon in atmospheric aerosols,” Nature, Vol.409, pp. 695-697.
Larson, S. M., Cass, G. R., Hussey, K. J. and Luce, F., 1988, “Verification of image processing based visibility models,” Environ. Sci. and Technol., Vol. 22, No. 6, pp. 629-637.
Larson, S. M. and Cass, G. R., 1989, “Characteristics of summer midday low-visibility events in the Los Angeles area,” Environ. Sci. and Technol.,” pp. 281-289.
Lave, L. B. and Seskin, E. P., 1970, “Air pollution and human health,” Science, Vol. 169, pp. 723-733.
Lee, H. S. and Kang, B. W., 2001, “Chemical characteristics of principal PM2.5 species in Chongju, South Korea,” Atmos. Environ., Vol. 35, No. 4, pp. 739-746.
Lin, J. J., 2001, “Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan,” Atmos. Environ., Vol. 35, No. 15, pp. 2627-2636.
Lin, J. J., 2002, “Characterization of water-soluble ion species in urban ambient particles,” Environ. Int., Vol. 28, pp. 55-61.
Lin, Y. C., Chang, F. T., Bai, H., Pei, B. S., 2005, “Control of VOCs emissions by condenser pre-treatment in a semiconductor fab,” J. Hazard. Mater., Vol. 120, pp. 9-14.
Lippmann, M.,1998, “The 1997 USEPA standards for particulate matter and ozone, pp. 75-99. Hester, R. E., Harrison, R. M., (Eds.), Issues in Environmental Science and Technology, Vol. 10. Royal Society of Chemistry, UK.
Logan, W. D. and Glasg, M. D., 1953, Mortality in the London fog incident, 1952, Lancet, pp. 336-338.
Mangelson, N., Lewis, F. L., Joseph, J. M., Cui, W., Machir, J., Williams, N. W., Eatough, D. J., Rees, L. B., Wilkerson, T. and Jensen, D. T., 1997, “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley, Uath,” J. Air and Waste Manage., Vol. 47, pp. 167-175.
Mueller, P. K., Mosly, R. W. and Pierce, L. B., 1972, “Chemical composition of pasadena aerosol by particle size and time of day ---IV.carbonate and non-carbonate carbon content,” J. Colloid Interf. Sci., Vol. 39, pp. 235-239.
Ohta, S. and Okita, T. A., 1990, “A chemical characterization of atmospheric aerosol in Sapporo,” Atmos. Environ., Vol. 24, pp. 815-822.
Saitoh, K., Sera, K., Hirano, K. and Shirai, T., 2002, “Chemical characterization of particles in winter-night smog in Tokyo,” Atmos. Environ., Vol. 36, pp. 435-440.
Samet J. M., F. Dominici, F. C. Curriero, I. Coursac and S. L. Zeger, 2000, Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. New England Journal of Medicine., Vol. 343, pp.1742-1749.
Schwartz J., Dockery D. W. and Neas, L.M., 1996, ”Is daily Mortality Association Specifically with Fine Particles? ,” J. Air and Waste Manage., Vol.46, pp.927-939.
Schwartz, J., 1994, ”What are people dying of on high air pollution days? , ”Environ. Res., Vol.64, pp. 26-35.
Seinfeld, J. H., 1986, Atmospheric Chemistry and Physics of Air Pollution, John Wiley and Sons, Inc. New York, pp. 22-24..
Sharma, M. and Maloo, S., 2005, ”Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India, ” Atmos. Environ., Vol. 39, pp. 6015-6026.
Sharma, M. and Maloo, S., 2005, ”Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India,” Atmos. Environ., Vol. 39, pp. 6015-6026.
Spengler, J. D., Brauer, M. and Koutrakis, P., 1990, ”Acid air and health,” Environ. Sci. and Technol., Vol. 24, pp. 946-956.
Suh, H. H., Spengler, J. D. and Koutrakis, P., 1992, ”Personal exposures to acid aerosols and ammonia,” Environ. Sci. and Technol., Vol. 26, pp. 2507-2517.
Tsai, C. J., Chang, C. T., Liu, T. W., Huang, C. C., Chien, C. L. and Chien, H. M., 2004, ”Emission characteristics and control efficiency of acidic and basic gases and aerosols from packed towers,” Atmos. Environ., Vol. 38, pp. 643-646.
Tsai, C. J., Miao, C. C. and Lu, H. C., 1997, ”White smoke emission from a semiconductor manufacturing plant,” Environ. Int., Vol. 25, No. 4, pp. 489-496.
Tsai, Y. I. and Kuo, S. C., 2005, ”PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan,” Atmos. Environ., Vol.39, pp. 4827-4839.
Turpin, B. J. and Huntzicker, J. J., 1991, ”Secondary formation of organic aerosol in the los angeles basin: a descriptive analysis of organic and elemental carbon concentration,” Atmos. Environ., Vol. 25A, pp. 207-215.
Turpin, B. J. and Huntzicker, J. J., 1995, ”Identification of secondary organic aerosol concentration during SCAQS,” Atmos. Environ., Vol. 29, pp. 3527-3544.
Vincent, J. H., 1995, Aerosol science for industrial hygienists., Oxford:Pergamon, pp. 136.
Voutsa, D., Samara, C., 2002, ”Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas,” Atmos. Environ., Vol. 36, pp. 3583-3590.
Watson, J. G. and Chow, J. C., 1998, Clear sky visibility as a challenge for society. In Workshop on Samplingk, Regulaiton, and Light Scattering Effects of PM2.5, United States Environmental Protection Agency, pp. 259-284..
Whitby, K. T. and Cantrell, B., 1976, Fine particles. In international conference on environmental sensing and assessments, Las Vegas, NV, Institute of Electric and Electronic Engineers.
Wilson,W. E. and Suh, H. H. , 1997, ”Fine particles and coarse particles : concentration relationships relevant to epidemiological studies,” J. Air and Waste Manage., Vol. 47, pp. 1239-1249.
Wu, H. B. and Chan, C. K. , 2008, ”Effects of potassium nitrate on the solid phase transitions of ammonium nitrate particles.,” Atmos. Environ., Vol. 42, pp. 313-322.
台灣應用材料股份有限公司,「半導體製程簡介」,http://www.amt.com.tw/other/Sitemap.asp,2008年11月18日。
劉妙生,2002,高科技電子業揮發性有機污染物管制理論與實務,碩士論文,元智大學,機械工程研究所,桃園。
蘭舜煒,2002,某半導體廠周界異味來源及控制研究,碩士論文,國立交通大學,環境工程研究所,新竹。
林家和,1999,PM1/PM2.5/PM10氣懸微粒特性之探討,碩士論文,國立臺灣大學,環境衛生研究所,台北。
林易玄,2004,區域性大氣氣膠組成之時空變異特性研究,碩士論文,嘉南藥理科技大學,環境工程與科學系,台南。
李芝珊,1992,「氣膠與健康」,環保科技通訊,第4卷,第5期,第4頁。
郭奕伶,1997,高屏地區光化學煙霧成因之研究,碩士論文,國立成功大學,環境工程學系,台南。
黃俊超,2004,高科技產業無機酸鹼廢氣組成與填充式濕式洗滌塔控制效率之研究,碩士論文,國立交通大學,環境工程研究所,新竹。
經濟部工業局工業污染防治技術服務團,1995,「半導體製造業污染防治技術」,經濟部工業局。
行政院勞工委員會,1998,「國內半導體製造業潛在危害暴露之初步」探討,勞工安全衛生簡訊,第24 期。
行政院環保署,2002,「半導體製造業空氣污染物管制及排放標準」。
行政院環保署,2006,「光電材料及光電製造業空氣污染管制及排放標準」。
張俊彥,1997,「積體電路製程及設備技術手冊」,行政院經濟部技術處。
鄭曼婷,邱嘉斌,黃美倫,王景良,1999,「台中沿海與都會區大氣粗細懸浮微粒特性及汙染來源探討」,第十六屆空氣污染控制技術研討會論文集,第19-25頁。
鄭曼婷,林煜棋,邱嘉斌,王竹方,郭崇義,2000,「2000年大陸沙塵暴過境中部地區大氣懸浮微粒之化學成分分析」,第十七屆空氣污染控制技術研討會論文集,第77-80頁。
周崇光,李崇德,詹長權,王群之,陳邦璋,2005,「北部地區超級測站監測成果與展望」,2005 環境資料庫暨空氣品質監測系統建置成果發表會,論文編號:B23-B43。
陳舜欽,2000,沙鹿地區大氣中酸性氣體及粗細懸浮微粒特性之研究,碩士論文,東海大學,環境科學系。
施寶慧,2001,高科技工業園區周界環境空氣中酸性氣膠之探討,碩士論文,國立交通大學,環境工程研究所,新竹。
財團法人中國技術服務社 工業污染防治技術服務團,1999,「半導體業之環境管理建制及稽核要項」,環境管理輔導人員研習訓練教材第四冊-行業系統建制與稽核相關課程,第10-1~10-40頁。
蔡素芬,1999,台灣地區道路塵粒特性之研究,碩士論文,國立清華大學,原子科學研究所,新竹。
蘇建中,2000,半導體工業區空氣汙染物之懸浮微粒的調查分析,碩士論文,國立清華大學,原子科學系環境科學組,新竹。
楊宏隆,1998,大氣懸浮微粒PM2.5及PM10之特性及來源分析,碩士論文,國立中興大學,環境工程研究所,台中。
王秋森,1997,「台北地區懸浮微粒特性及污染源之評估」,行政院環保署空氣污染防治研究發展計畫。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔