(44.192.10.166) 您好!臺灣時間:2021/03/06 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賈塔欣
研究生(外文):Wantamas Jantasin
論文名稱:生物膜對豬隻廢水厭氣處理效果之研究
論文名稱(外文):Effects of Biological Membrane on the Performance of Anaerobic Treatment of Swine Wastewater
指導教授:夏良宙夏良宙引用關係
指導教授(外文):Liang Chou Hsia
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:148
中文關鍵詞:厭氣處理養豬廢水生物反應器肥料生物膜
外文關鍵詞:anaerobic treatmentswine wastewaterbioreactormanurebiological membrane
相關次數:
  • 被引用被引用:2
  • 點閱點閱:296
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:1
兩個試驗皆是利用養豬廢水並控制在厭氣處理的情況下。在試驗一中主要是3個溫度處理(15, 25, 和35℃)和3個pH處理(6.5, 7.0, 和7.5)之複因子設計,對其厭氣性細菌之影響。厭氣廢水主要分成9個處理組,每處理4重複,每重複之試驗期為7天。每一個生物反應器皆個別檢測其厭氣廢水。在7天的試驗期結束後,發現養豬廢水在溫度25℃及pH 7.0的處理下,對於BOD及COD具有顯著較高之去除率(P<0.001),並且會有較高之NH3(91.66 ppm)及H2S(10.21 ppm)產生。
試驗二中主要將厭氣廢水分成3個處理組,每處理4重複,每重複之試驗期為4天。3個處理組分別為,處理1為厭氣廢水、manure、biofilm;處理2為自來水、manure;處理3為厭氣廢水、manure。利用試驗一的結果,因此我們將試驗二中的每一個生物反應器皆控制在溫度25℃及pH 7.0的環境下,並且進行個別的檢測。在4天的試驗期結束後,發現處理1(有添加biofilm)具有顯著較高之BOD、COD、SS及TP的去除率(P<0.001),並且其沼氣的產量具有極顯著的不同(P<0.001)。
綜合試驗一及試驗二的結果發現,生物膜具有非常大之處理效率,並且可以增加沼氣的產量及改善養豬廢水的處理性能。

Two studies were conducted to evaluate the performance of anaerobic treatment treating swine wastewater. In the first study was to determine the effect of 3 temperatures (15, 25, and 35oC) × 3 pH (6.5, 7.0, and 7.5) on anaerobic bioreactor. The anaerobic wastewaters were allocated to form 9 combinations of treatments. There were 4 replicates per treatment, and 1 replicate was an interval of 7 days. Anaerobic wastewaters were tested individually in each bioreactor. The results demonstrated that after 7 days of experimental period on temperature 25oC and pH 7.0 have high efficiency for treat swine wastewater that demonstrated in high BOD and COD survival rate (P<0.001), and high NH3 (91.66 ppm) and H2S (10.21 ppm) production. In the second study, anaerobic wastewaters were allocated into 3 treatments. There were 4 replicates per treatment, and 1 replicate was an interval of 4 days. The 3 treatments were (1) anaerobic wastewater, manure, biofilm; (2) ordinary water, manure; (3) anaerobic wastewater, manure. There were tested individually in each bioreactor which was operated at 25oC and pH 7.0 from the result of the first experiment. The results after 4 days of experimental period demonstrated that treatment 1 (add biofilm) was high BOD, COD, SS, and TP survival rate (P<0.001) and also biogas production level highly significant difference (P<0.001). The results obtained from the two studies further demonstrated that biological membrane could maximize the efficiency of the treatment, enhance the biogas production and subsequently improve performance of swine wastewater treatment.
CHINESE ABSTRACT I
ENGLISH ABSTRACT III
ACKNOWLEDGEMENTS V
TABLE OF CONTENTS VI
LIST OF FIGURES X
LIST OF TABLES XII
1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives 3
2. LITERATURE REVIEW 4
2.1 Water Pollution from Swine Farming 4
2.1.1 The characteristics of swine wastewater 4
2.1.2 Environmental problem from pig farm 8
2.2 Biological Wastewater Treatment 10
2.2.1 Microorganisms and pollution control 11
2.2.2 Biodegradable wastewater treatment options 12
2.2.3 Aerobic vs. anaerobic degradation 13
2.2.4 Application of anaerobic digestion 14
2.3 Biochemical and Microbiological Knowledge of Anaerobic Process 17
2.3.1 Wastewater microorganisms 18
2.3.2 Anaerobic degradation of organic matter 21
2.3.3 Types of microbial in anaerobic process 25
2.4 Biological Membrane in Anaerobic Wastewater 27
2.4.1 Role of microorganisms in anaerobic wastewater treatment 27
2.4.2 Definition and mechanism of biological membrane 28
2.4.3 Biofilm immobilization fundamentals 30
2.4.4 Anaerobic wastewater treatment with fixed biofilm 31
2.4.5 Benefits of Biofilm to Bacteria 32
2.4.6 Factors Influencing the Survival of Biological Membrane 32
2.4.7 Benefits of biological membrane in anaerobic wastewater treatment 40
2.5 Potential Advantages of Controlled Anaerobic digestion 41
2.5.1 Odor reduction from manure 41
2.5.2 Removal of Organic Matter 42
2.5.3 Biogas Production 42
3. MATERIALS AND METHODS 44
3.1 Experiment 1 44
3.1.1 Anaerobic wastewater Treatments 44
3.1.2 Experimental wastewater design 45
3.1.3 Equipment 46
3.1.4 Experimental procedures 47
3.1.4.1 Measured of biogas production 48
3.1.4.2 Measurement of ORP, NH4+, NO3- 49
3.1.4.3 Determination of Chemical oxygen demand (COD) 50
3.1.4.4 Determination of BOD 53
3.1.4.5 Determination of Total Kjeldahl Nitrogen (TKN) 56
3.1.4.6 Determination of Suspended Solids (SS) 58
3.1.4.7 Determination of Total Phosphorus (TP) 60
3.1.4.8 Bacterial counts 62
3.1.5 Statistic Analysis 63
3.2 Experiment 2 64
3.2.1 Anaerobic Wastewater Treatments 64
3.2.2 Experimental wastewater design 65
3.2.3 Equipment 65
3.2.4 Experimental Procedures 66
3.2.4.1 Measured of Biogas Production 66
3.2.5 Statistic Analysis 66
4. RESULTS AND DICUSSION 67
4.1 Experiment 1: Effect of temperature and pH on the performance of anaerobic treatment 67
4.1.1 Effect of different temperature on anaerobic bioreactor 67
4.1.1.1 Temperature effect on BOD, COD, TKN, SS, TP, and total bacterial counts 67
4.1.1.2 Temperature effect on ORP, NH4+, and NO3- 70
4.1.1.3 Temperature effect on the biogas production 73
4.1.2 Effect of different pH on anaerobic bioreactor 75
4.1.2.1 pH effect on BOD, COD, TKN, SS, TP, and total bacterial counts 75
4.1.2.2 pH effect on ORP, NH4+, and NO3- 78
4.1.2.3 pH effect on the biogas production 81
4.1.3 Effect of time on anaerobic bioreactor 82
4.1.3.1 Time effect on BOD, COD, TKN, SS, TP, and total bacterial counts 82
4.1.3.2 Time effect on ORP, NH4+, and NO3- 85
4.1.3.3 Time effect on the biogas production 90
4.1.3.4 Relationship between temperature and pH on survival rate 95
4.1.3.5 Relationship between temperature and pH on biogas production 99
4.1.3.6 Relationship between temperature and time on biogas production 101
4.1.3.7 Relationship between pH and time on biogas production 104
4.2 Experiment 2: Effect of Treatments on the Performance of Anaerobic Treatment 105
4.2.1 Effect of treatments on anaerobic bioreactor 105
4.2.1.1 Treatments effect on BOD, COD, TKN, SS, TP, and total bacterial counts 105
4.2.1.2 Treatments effect on ORP, NH4+, and NO3- 108
4.2.1.3 Treatments effect on the biogas production 111
4.2.2 Effects of time on anaerobic bioreactor 112
4.2.2.1 Time effect on BOD, COD, TKN, SS, TP, and total bacterial counts 112
4.2.2.2 Time effect on ORP, NH4+, and NO3-. 115
4.2.2.3 Time effect on the biogas production. 117
4.2.2.4 Relationship between treatment and day on survival rate 122
4.2.2.5 Relationship between treatment and day on biogas production 124
5. CONCLUSIONS 126
REFERENCES 127
APPENDIX 143
BIOSKETCH OF AUTHOR 148

LIST OF FIGURES

Figure 1. Anaerobic degradation of organic matter 22
Figure 2. Development of biofilms 29
Figure 3. Collected wastewater, biofilms and swine manure. 45
Figure 4. Bioflo®110 Fermentor/ Bioreactor 46
Figure 5. Flushed CO2 to reestablish the anaerobic condition 46
Figure 6. Anaerobic wastewater sample 47
Figure 7. Gas production equipments 48
Figure 8. ORP, NH4+, NO3- determination equipments 49
Figure 9. COD determination equipments 52
Figure 10. BOD determination equipments 55
Figure 11. TKN determination equipments. 57
Figure 12. Determination of Suspended solids 59
Figure 13. TP determination equipments 61
Figure 14. Bacterial colony determination equipments 63
Figure 15. Composition of three treatments 64
Figure 16. CO2 meter 66
Figure 17. Relationship between temperature and pH on COD 95
Figure 18. Relationship between temperature and pH on TKN survival rate 96
Figure 19. Relationship between temperature and pH on TP survival rate 96
Figure 20. Relationship between temperature and pH on Bac survival rate 97
Figure 21. Relationship between temperature and pH on ORP survival rate 97
Figure 22. Relationship between temperature and pH on NH4+ survival rate 98
Figure 23. Relationship between temperature and pH on NO3- survival rate 98
Figure 24. Relationship between temperature and pH on CH4 productions 99
Figure 25. Relationship between temperature and pH on NH3 productions 100
Figure 26. Relationship between temperature and pH on H2S productions 100
Figure 27. Relationship between temperature and pH on CO2 productions 101
Figure 28. Relationship between temperature and time on CH4 productions 102
Figure 29. Relationship between temperature and time on NH3 productions 102
Figure 30. Relationship between temperature and time on H2S productions 103
Figure 31. Relationship between temperature and time on CO2 productions 103
Figure 32. Relationship between pH and time on NH3 productions 104
Figure 33. Relationship between pH and time on CO2 productions 104
Figure 34. Relationship between treatment and day on COD survival rate 122
Figure 35. Relationship between treatment and day on Total phosphorus survival rate 123
Figure 36. Relationship between treatment and day on total bacterial counts survival rate 123
Figure 37. Relationship between treatment and day on CH4 productions 124
Figure 38. Relationship between treatment and day on NH3 productions 125
Figure 39. Relationship between treatment and day on H2S productions 125


LIST OF TABLES

Table 1. Concentrations of raw and anaerobically digested pig manure. 5
Table 2. Nine combinations of treatments of experiment1. 44
Table 3. The wastewater contents of three treatments of experiment 2. 65
Table 4. Effect of temperature on BOD, COD, TKN, SS, TP, and total bacterial counts. 68
Table 5. Effect of temperature on BOD, COD, TKN, SS, TP, and total bacterial counts on the survival rate. 69
Table 6. Effect of temperature on ORP, NH4+, and NO3-. 71
Table 7. Effect of temperature on ORP, NH4+, and NO3- on the survival rate. 72
Table 8. Effect of temperature on CH4, NH3, H2S, and CO2 production. 74
Table 9. Effect of pH on BOD, COD, TKN, SS, TP, and total bacterial counts. 76
Table 10. Effect of pH on BOD, COD, TKN, SS, TP, and total bacterial counts on the survival rate. 77
Table 11. Effect of pH on ORP, NH4+, and NO3-. 79
Table 12. Effect of pH on ORP, NH4+, and NO3- on the survival rate. 80
Table 13. Effect of pH on CH4, NH3, H2S, and CO2 production. 81
Table 14. Effect of time on BOD, COD, TKN, SS, TP, and total bacterial counts. 83
Table 15. Effect of time on BOD, COD, TKN, SS, TP, and total bacterial counts on the survival rate. 84
Table 16. Effect of time on ORP, NH4+, and NO3-. 86
Table 17. Effect of time on ORP, NH4+, and NO3- on the survival rate. 88
Table 18. Effect of hour on CH4, NH3, H2S, and CO2 production. 91
Table 19. Effect of day on CH4, NH3, H2S, and CO2 production. 93
Table 20. Effect of second on CH4, NH3, H2S, and CO2 production. 94
Table 21. Effect of treatments on BOD, COD, TKN, SS, TP, and total bacterial counts. 106
Table 22. Effect of treatments on BOD, COD, TKN, SS, TP, and total bacterial counts on the survival rate 107
Table 23. Effect of treatments on ORP, NH4+, and NO3-. 109
Table 24. Effect of treatments on ORP, NH4+, and NO3- on the survival rate. 110
Table 25. Effect of treatments on CH4, NH3, H2S, and CO2 production. 111
Table 26. Effect of time on BOD, COD, TKN, SS, TP, and total bacterial counts. 113
Table 27. Effect of time on BOD, COD, TKN, SS, TP, and total bacterial counts on the survival rate. 114
Table 28. Effect of time on ORP, NH4+, and NO3-. 115
Table 29. Effect of time on ORP, NH4+, and NO3- on the survival rate. 116
Table 30. Effect of hour on CH4, NH3, H2S, and CO2 production. 118
Table 31. Effect of day on CH4, NH3, H2S, and CO2 production. 120
Table 32. Effect of second on CH4, NH3, H2S, and CO2 production. 121


Aarnink, A. J. A., D. Swierstra, A. J. Van den Berg, and L. Speelman (1997) Effect of type of slatted floor and degree of fouling of solid floor on ammonia emission rates from fattening piggeries. J. Agric. Eng. Res. 66: 93-102.

Adamse, A. D., H. D. Maria, and A. J. B. Zehnder (1984) Studies on bacterial activities in aerobic and anaerobic wastewater purification. Antonie van Leeuwenhoek. 50: 665-682.

Ahearn, D. G., R. N. Borazjani, R. B. Simmons, and M. M. Gabriel (1999) Primary adhesion of Pseudomonas aeruginosa to inanimate surfaces including biomaterials. Methods in Enzymology. 1: 301-310.

Ahmed, M., A. Idris, and A. Adam (2007) Combined anaerobic - aerobic system for treatment of textile wastewater. Journal of Engineering Science and Technology. 2: 55-69.

Ahn, Y. H., J. Y. Bae, S. M. Park, K. S. Min (2004) Anaerobic digestion elutriated phased treatment of piggery waste. Water Sci. Technol. 49 (56): 181.

Ahring, B. K. (2003) Perspectives for Anaerobic Digestion. Advances in Biochemical Engineering/ Biotechnology. 81: 1-30.

Alonso, C., M. T. Suidan, G. A. Sorial, F. L. Smith, P., P. Biswas, P. J. Smith, and R. C. Brenner (1997) Gas treatment in trickle-bed biofilters: biomass, how much is enough. Biotechnology and Bioengineering. 54: 583-594.

American Society of Agricultural Engineers (1990) Manure production and characteristics. ASAE Data: ASAE D384.1. American Society of Agricultural Engineers Standards, St. Joseph, MI.


Angelidaki, I., and B. K. Ahring (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Research 28: 727-731.

Angelidaki, I., and B. K. Ahring (1995) Establishment and characterization of an anaerobic thermophilic (55oC) enrichment culture degrading long-chain fatty acids. App. Environ. Microbiol. 61(6): 2442-2445.

APHA. (1998) Standard Methods for the Examination of Water and Wastewater (Lenore S C; Greenberg A E; Eaton A D, eds), 20th edn. American Public Health Association, NW, Washington, DC.

Arnold, M., A. Reittu, A. von Wright, P. J. Martikatianen, and M. L. Suihko (1997) Bacterial degradation of styrene in waste gases using a peat filter. Applications of Microbiological. Biotechnology. 48: 738-744.

Azbar, N., and R. Speece (2001) Two-phase, two-stage, and single-stage anaerobic process comparison. J. Environ. Eng. 127: 240-247.

Barker, J. C., and M. R. Overcash (2006) Swine Waste Characterization : A Review. American Society of Agricultural and Biological Engineers. 50(2): 651-657.

Bendixen, H. J. (1994) Safeguards against pathogens in Danish biogas plants. Wat. Sci. Technol. 30: 171-180.

Bilstad, T., M. Madland, E. Espedal, and P. H. Hanssen (1992) Membrane separation of raw and anaerobically digested pig manure. Wat. Sci. Tech. 25(10): 19-26.

Bonmatí, A., X. Flotats, L. Mateu, and E. Campos (2001) Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry, Water Science and Technology. 44(4): 109-116.

Bruce, E. R. (2004) Biofilm technology used to improve water quality. Journal of Shanghai Normal University (Natural Science). 33(4): 1-8.

Buisman, C., R. Ijspeert, P. Geraats, and G. Lettinga (1989) Biotechnological process for sulphide removal with sulphur reclamation. Acta Biotechnology. 9: 255-267.

Burak, D. and S. Paul (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev Environ Sci Biotechnol. 7: 173-190.

Burak, D. and O. Yenigun (2002) Two-phase anaerobic digestion processes: A review. Journal of Chemical Technology and Biotechnology, 77, 743-755.

Canh, T. T., M. W. A., Verstegen, A. J. A., Aarnink, J. W., Schrama (1997) Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs. J. Anim. Sci. 75: 700-706.

Carucci, G., F. Carrasco, K. Trifoni, M. Majone, and M. Beccari (2005) Anaerobic digestion of food industry wastes: Effect of codigestion on methane yield. Journal of environmental engineering. ASCE. 131: 1037-1045.

Cha, G. C., T. Noike (1997) Effect of rapid temperature change and HRT on anaerobic acidogenesis. Water Science and Technology. 36(67): 247-253.

Chae, K. J., S. K. Yim, K. H. Choi, S. K. Kim, and W. K. Park (2004) Integrated biological and electro-chemical treatment of swine manure. Water Sci. Technol. 49(56): 427.

Chastain, J. P., W. D. Lucas, J. E., Albrecht, J. C. Pardue, J. Adams III., and K. P. Moore (2001) Removal of solids and major plant nutrients from swine manure using a screw press separator. Applied Engineering in Agriculture 17(3): 355-363.

Cheong, D. Y. (2005) Studies of high rate anaerobic bio-conversion technology for energy production during treatment of high strength organic wastewaters. PhD Dissertation, Utah State University, Logan, Utah.

Chen, A., P. H. Liao, and K. V. Lo (1994) Headspace analysis of malodorous compounds from swine wastewater under aerobic treatment. Bioresource Technology. 49(1):83-87.

Chen, Y., J. J. Cheng. and K. S. Creamer (2008) Inhibition of anaerobic digestion process : A review. Bioresource Technology. 99: 4044-4064.

Chynoweth, D. P., R. Isaacson (1987) Anaerobic digestion of biomass. Elsever Applied Science, Ltd, London.

Costerton J. W., Z. Lewanndowski, D. Caldwell, D. Korber, and H. M. Lappin-Scott (1995) Microbial biofilms. Annual Review of Microbiology. 49: 711-745.

Costerton J. W., Z. Lewanndowski, D. De Beer, D. Caldwell, D. Korber, and G. James (1994) Biofilms the customized microniche. Journal of bacteriology. 176: 2137-2142.

Costerton J. W., P. S. Stewart, and E. P. Greenburg (1999) Bacterial biofilms: a common cause of persistent infections. Science. 284(5418): 1318-1322.

Costerton, W. J., and M. Wilson (2004) Introducing biofilms. Biofilms. 1(1): 1-4.

De Beer, D., P. Stoodley, F. Roe, and Z. Lewandowski (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering. 43: 1131-1138.

Demirel, B., and O. Yenigun (2004) Anaerobic acidogenesis of dairy wastewater: the effects of variations in hydraulic retention time with no pH control. J. Chem. Tech. Biotechnol. 79(7): 755.

Demirer, G. N., and S. Chen (2004) Effect of retention time and organic loading rate on anaerobic acidification and biogasification of dairy manure. J. Chem. Tech. Biotechnol. 79(12): 1381.

Dennis, A., and P. E. Burke (2001) Option for recovering beneficial products dairy manure. Environmental Energy Company. 1-57.

Droste, R. L. (1997) Theory and practice of water and wastewater treatment. John Wiley and Sons, New York.

Elefsiniotis, P., and W.K. Oldham (1994a) Substrate degradation patterns in acid-phase anaerobic digestion of municipal primary sludge. Environmental Technology. 15: 741-751.

Elefsiniotis, P., and W. K. Oldham (1994b) Influence of pH on the acid-phase anaerobic digestion of primary sludge. Journal of Chemical Technology and Biotechnology. 60: 89-96.

El-Mashad, H. M., G. Zeeman, W. K. P. van Loon, G. P. A. Bot, and G. Lettinga (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource Technol. 95(2): 191.

Field, J. A., J. S. Caldwell, S. Jeyanayagam, R. B. Jr Reneau, W. Kroontje, and E. R. Collins (1984) Fertilizer recovery from anaerobic digesters. Transactions of the ASAE. 27:1871-1881.

Fox, P., and F. G. Pohland (1994) Anaerobic treatment applications and fundamentals : substrate specificity during phase separation. Water Environment Res. 66: 716-724.

Garcia, J. L., B. K. C. Patel, and B. Ollivier (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe. 6: 205-226.

Grady, C. P. L., and H. C. Lim (1990) Biological Wastewater Treatment Theory and Application. Marcel Dekker, New York, 963pp.

Gottenbos, B. H. C. van der Mei, and H. J. Busscher (1999) Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology. 310: 523-531.

Grommen, R., and W. Verstraete (2002) Environmental biotechnology: the ongoing quest. Journal of Biotechnology. 98: 113-123.

Gunaseelan, V. N. (1997) Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy. 13: 83-114.

Gungor, D. G., and G. N. Demirer (2004) Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresource Technol. 93(2): 109.

Hansen, K. H., I., Angelidaki, and B. K. Ahring (1999) Improving thermophilic anaerobic digestion of swine manure. Water Res. 33 : 1805-1810.

Hartung, J., and V.R. Phillips (1994) Control of gaseous emissions from livestock buildings and manure stores. J. Agric. Eng. Res. 57: 173-189.

Heber, A.J. and J. Q. Ni (1999) Odor emission from a swine finishing facility with a surfaceaerated lagoon. ASAE, St. Joseph, MI. 99-4129.

Hidalgo, M. D., and P. A. Garcia (2002) Biofilm development and bed segregation in a methanogenic fluidized bed reactor. Water Res. 36: 3083-3091.

Hobbs, P. J., B. F. Pain, and T. H. Misselbrook (1995) Odorous compounds and their emission rates from livestock wastes. Proceedings of the International Livestock Odor Conference '95, New Knowledge in Livestock Odor Solutions. Iowa State University, Ames.11-15.

Houghton, J. T., L. G. Meira, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (1996) The Science of Climate Change. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 150pp.

Horiuchi, J. I., T. Shimizu, K. Tada, T. Kanno, and M. Kobayashi (2002) Selective production of organic in anaerobic acid reactor bt pH control. Bioresource Technology. 82: 209-213.

Hsu, Y. and W. K. Shieh (1993) Start-up of anaerobic fluidised bed reactors with acetic acid as the substrate. Biotechnology and Bioengineering. 41: 347-353.

HulshoffPol, L. W (1998) Waste characteristics and factors affecting reactor performance. Lecture Notes by Hulshoff Pol in International Course on Anaerobic Wastewater Treatment, Wageningen Agricultural University, The Delft, Netherlands. 130pp.

HulshoffPol, L. W (2001) New developments in reactor and process technology for sulfate reduction. Water science and technology. 44(8): 67.

Hwang, S., Y. Lee, and K. Yang (2001) Maximization of acetic acid production in partial acidogenesis of swine wastewater. Biotechnol. 111: 297-309.

IPCC (1992) Climate Change 1992: the supplementary report to the IPPC Scientific Assessment. International Panel on Climate Change. Cambridge University Press, Cambridge, UK. 200pp.

Irini, A. E., K. Lars, and A. Birgitte (2003) Applications of the anaerobic digestion process. Advances in Biochemical Engineering/ Biotechnology. 82: 1-33.

Jactone, A. O., W. Zhiyou, I. John, B. Eric, and E. R. Collins (2007) Biomethane technology. Verginia Cooperative Extension. 1: 442-881.

Jennifer, R (2004) Optimization of Nitrogen Removal from Anaerobically-Pretreated Swine Wastewater (APTSW). Biological and Agricultural Engineering. 1: 15-21.

Jessica, B., and P. A. Viney (2008) Characterizing ammonia and hydrogen sulfide emissions from a swine waste treatment lagoon in North Carolina. Atmospheric Environment. 42: 3277-3290.

Jongbloed, A. W., H. D. Poulsen, J. Y. Dourmad, C. M. C. Van der Peet-Schwering (1999) Environmental and legislative aspects of pig production in The Netherlands, France and Denmark. Livest. Prod. Sci. 58: 243-249.

Karakashev, D., J. E. Schmidt, and I. Angelidaki (2008) Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure. Water Research. 42(15): 4083-4090.

Kaseng, K., K. Ibrahim, S. V. Paneerselvam, and R. S. Hassan (1992) Extracellular enzymes and acidogen profiles of a laboratory-scale two-phase anaerobic digestion system. Process Biochemistry. 27: 43-47.

Kashyap, D. R., K. S. Dadhich, and S. K. Sharma (2003) Biomethanation under psychrophilic conditions: a review. Bioresource Technology. 87: 147-153.

Kayhanian, M (1994) Performance of a high-solids anaerobic digestion process under various ammonia concentrations. J. Chem. Tech. Biotechnol. 59: 349-352.

Kayhanian, M (1999) Ammonia inhibition high-solids biogasification: an overview and practical solutions. Environ. Technol. 20: 355-365.

Kelleher, B. P., J. J. Leahy, A. M. Henihan, T. F. O’Dwyer, D. Sutton, and M. J. Leahy (2000) Advances in poultry litter disposal technology-a review. Bioresour. Technol. 83: 27-36.

Khursheed, K. K., K. Thomas, H. Rebecca, R. D. Sadie, W. D. David, and M. H. Al-Dahhan (2005) Anaerobic digestion of animal waste: Effect of mixing. Bioresource Technology. 96: 1607-1612.

Keri, B. C., D. Thomas, S. R. Kyoung, and G. H. Patrick (2008) Review livestock waste-to-bioenergy generation opportunities. Bioresource Technology. 99: 7941-7953.

Kuang, Y., M. Lepesteur, P. Pullammanappallil, and G. E. Ho (2002) Influence of co-substrates on structure of microbial aggregation in long-chain fatty acid-fed anaerobic digesters. Letters in Applied Microbiology. 35: 1-5.

Kwang, J. O., K. Donguk, and I. L. Hwa (1998) Development of effective hydrogen sulphide removing equipment using Thiobacillus sp. IW. Environmental Pollution. 99: 87-92.

Le, P. D., A. J. A. Aarnink, N. W. M. Ogink, P. M. Becker, and M. W. A. Verstegen (2005) Odour from animal production: its relation to diet. Nutr. Res. Rev. 18: 3-30.

Lettinga, G. (1995) Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek. 67: 3-28.

Lettinga, G. (2004) With anaerobic treatment approach towards a more sustainable and robust environmental protection. In: 10th International Conference on Anaerobic Digestion. Montreal, Canada, 29th August-3rd September. 1: 2-12.

Lettinga, G., J. Field, J. van Lier, G. Zeeman, and L.W. Hulshoff Pol (1997) Advanced anaerobic wastewater treatment in the near future. Water Sci. Technol. 35 (10): 5-12.

Leitão, R.C. (2004) Robustness of UASB reactors treating sewage under tropical conditions. Ph.D. Thesis. Wageningen University.

Liu, T., and S. Sung (2002) Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci. Technol. 45: 113-120.

Liu, Y., and J. H. Tay (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36: 1653-1665.

Luo, A., J. Zhu, and P. M. Ndegwa (2001) Phosphorus transformation in swine manure during continuous and intermittent aeration processes, Transactions of the ASAE 44(4): 967-972.

Lyberatos, G., and I. V. Skiadas (1999) Modelling of anaerobic digestion: Areview. Global Nest the Int. J. 1(2): 63-76.

Masse, D. I., F. Croteau, L. Masse, and S. Danesh (2004) The effect of scale-up on the digestion of swine manure slurry in psychrophilic anaerobic sequencing batch reactors. Trans. ASAE. 47(4): 1367.

McCartney, D. M., and J. A. Oleszkiewicz (1991) Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res. 25(2): 203-209.

McConnell, J. C., K. M. Barth, and S. A. Griffin (1972) Nitrogen metabolism at three stages of development and its relationship to measurements of carcass composition in fat and lean type swine. Journal of Animal Science. 35: 556.

Michael, H. G. (2006) Wastewater microorganisms. Wastewater Bacteria. 1: 1-10.

Moller, H. B., S. G. Sommer, and K. B. Ahring (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26(5): 485.

Monteny, G. J., C. M. Groenestein, and M. A. Hilhorst (2001) Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutr. Cycl. Agroecosyst. 60: 123-132.

Moosbrugger, R. E., M. C. Wentezel, G. A. Ekama, and G. V. Marais (1993) Weak acid/bases and pH control in anaerobic systems A review. Water SA. 19:1-10.

Nasib, Q., A. A. Bassam, C. E. Thaddeus, K. Patrick, and S. M. Ian (2005) Review Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial Cell Factories. 4: 12-24.

Ndegwa, P. M., J. Zhu, and A. Luo (2002) Effects of solids separation and time on the production of odorous compounds in stored pig slurry. Biosystems Engineering 81(1): 127-133.

Nielsen, H. B., Z. Mladenovska, P. Westermann, and B. K. Ahring (2004) Comparison of two-stage thermophilic (68°C/55°C) anaerobic digestion with one-stage thermophilic (55°C) digestion of cattle manure. Biotechnol. Bioeng. 86(3): 280-291.

Noykova, N., T. G. Muller, M. Gyllenberg, and J. Timmer (2002) Quantitative analysis of anaerobic wastewater treatment processes: Identifiability and Parameter Estimation. Biotechnology and Bioengineering. 78: 89-103.

Nozhevnikova, A. N., O. R. Kotsyurbenko, and S. N. Parshina (1999) Anaerobic manure treatment under extreme temperature conditions. Wat. Sci Tech. 40(1): 215- 221.

Nuria, F., E. D. Emiliano, A. Ricardo, and L. S. José (2008) Analysis of Microbial Community during Biofilm Development in an Anaerobic Wastewater Treatment Reactor. Microb Ecol. 56: 121-132.

Olson, B. H., R. McCleary, and J. Meeker (1991) Background and models for bacterial biofilm formation and function in water distribution systems. Modeling the Environmental fate of Microorganisms. 2: 255-285.

O’Flaherty, V., P. Lens, B. Leaky, and E. Collern (1998) Long term competition between sulphate reducing and methane-producing bacteria during full-scale anaerobic treatment of citri acid production wastewater. Water Res. 32(3): 815-825.

O'Neill, D. H., and V. R. Phillips (1992) Review of the control of odour nuisance from livestock buildings: Part 3: properties of the odorous substances which have been identified in livestock wastes or in the air around them. J. Agric. Eng. Res. 53: 23-50.

Osada, T., K. Haga, and Y. Harada (1991) Removal of nitrogen and phosphorus from swine wastewater by the activated sludge units with the intermittent aeration process. Water Research 25(11): 1377-1388.

O’Toole, G., H. B. Kaplan, and R. Kolter (2000) Biofilm formation as microbial development. Annual Review of Microbiology. 54: 49-79.

Panalee, C., P. Udomphon, and W. Wanrudee (2006) Pilot scale experiment on aeration control system for upgrading single-stage activated sludge process for latex rubber industrial wastewater. Songklanakarin J. Sci. Technol. 28(4): 871-876.

Parawira, W. (2004) Anaerobic treatment of agricultural residues and wastewater PhD Thesis, Lund University, Sweden.

Pavlostathis, S.G., and G. E. Giraldo (1991) Kinetics of anaerobic treatment : a critical review. Crit. Rev. Environ. Control. 21: 411-490.

Pierre, J (2006) Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste. Livestock Science 102: 187-196.

Powers, W. J., A. C. Wilkie, H. H. van Horn, and R. A. Nordstedt (1997) Effects of hydraulic retention time on performance and effluent odor of conventional and fixed-film anaerobic digesters fed dairy manure wastewaters. Trans. ASAE. 40: 1449-1455.

Prasanna, L. A. (1996) Anaerobic treatment of topioca starch industry wastewater by UASB reactor. M.S. Thesis, Asian Institute of Technology.

Priest, J. B., J. Zhu, R. Maghirang, L. L. Christianson, and G. L. Riskowski (1994) Agricultural environments and their effects on animals, plants, workers, and the structure. ASAE. 1: 94-4587.


Rajeshwari, K.V., M. Balakrishnan, A. Kansal, L. Kusum, and V.V.N. Kishore (2000) State of the art of anaerobic digestion technology for industrial wastewater treatment. Renewable and Sustainable Energy Reviews. 4: 135-156.

Raskin, L., J. Strinmley, B. E. Rittmann, and D. A. Stahl (1994) Group specific 16S RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microb. 60: 1232-1240.

Rinzema, A., M. Boone, K. Knippenberg, and G. Lettinga (1994) Bacterial effect of long chain fatty acids in anaerobic digestion. Wat. Environ. Res. 66: 40-49.

Rittmann, B. E., and P. L. Mccarty (2001) Environmental biotechnology: Principles and applications. McCraw-Hill Book Co, New York. 250pp.

Ross, W. R., J. P. Barnaed, N. K. H. Strohwald, C. J Grobler, and J. Sanetra (1992) Practical application of the aduf process to the full-scale treatment of a maize-processing effluent. Wat. Sci. Tech. 25(10): 27-39.

Rozzi, A., A. Di Pinto, N. Limmoni, and M. Tomei (1994) Start up and operation of anaerobic digesters with automatic bicarbonate control. Bioresource Technol. 48: 215-219.

Safley, L. M., and P. W. Westerman (1994) Low-Temperature digestion of dairy and swine manure. Bioresource Technology. 47(2):165-171.

Sanchez, E., R. Borja, L. Travieso, M. F. Colmenarejo, A. Chica, and A. Martin (2005) Treatment of settled piggery waste by a down-flow anaerobic fixed bed reactor. J. Chem. Tech. Biotechnol. 79(8): 851.

Sanders, W.T.M., M. Geerink, G. Zeeman, and G. Lettinga (2000) Anaerobic hydrolysis kinetics of particulate substrates. Wat. Sci. Technol. 41(3): 17-24.

Santegoeds, C. M., T. G. Ferdelman, G. Muyzer, and D. De Beer (1998) Structural and functional dynamics of reducing-reducing populations in bacterial biofilms. Applied and Environmental Microbiology. 64: 3731-3739.

Sawyer , C. N., P. L. McCarty, and G. F. Parkin (1994) Chemistry for Environmental Engineering. (4th ed.). Singapore. McGraw-Hill International Editions. 110pp.

Seghezzo, L., G. Zeeman, J. B. van Lier, H. V. M. Hamelers, and G. Lettinga (1998) A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology. 65: 175-190.

Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews. 61: 262-280.

Schink, B. (2002) Anaerobic digestion: concepts, limits and perspectives. Water Science and Technology. 45: 1-8.

Singh, S. P., and P. Pandey (2008) Review of recent advances in anaerobic packed-bed biogas reactors. Renewable and Suatainable Energy Reviews. RSER-585.
Singh, S.P., and P. Pandey (2009) Review of recent advances in anaerobic packed-bed biogas reactors. Renewable and Sustainable Energy Reviews. 13: 1569-1575.

Skjelhaugen, O. J. (1999) Thermophilic aerobic reactor for processing organic liquid wastes. Water Res. 33: 1593-1602.

Sneath, R. W., C.H. Burton, and A. G. Williams (1992) Continuous aerobic treatment of piggery waste for odour control. Journal of Agricultural Engineering Research 53(1): 81-92.

Sobsey, M. D., L. A. Khatib, V. R. Hill, E. Alocilja, and S. Pillai (2001) Pathogens in animal wastes and the impacts of waste management practices on their survival, transport and fate. In: White Papers on Animal Agriculture and the Environment. MidWest Plan Service (MWPS), Iowa State University, Ames, IA. 170pp.

Spoelstra, S.F. (1979) Volatile fatty acids in anaerobically stored piggery wastes. Neth. J. Agric. Sci. 27: 60-66.

Spoelstra, S. F. (1980) Origin of objectionable odorous components in piggery wastes and the possibility of applying indicator components for studying odour development. Agric. Environ. 5: 241-260.

Steiner, C. G. (2000) Understanding anaerobic treatment. Pollution Engineering. 36-38.

Stephen D. (2005) Siting analysis of farm-based centralized anaerobic digester systems for distributed generation using GIS. Biomass and Energy 28: 591-600.

Stoodley, P., K. Sauer, D. G. Davies, J. W. Costerton (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol. 56: 187-209.

Sweeten, J. M. (1992) Livestock and poultry waste management: A national overview. American Society of Agricultural Engineers. 1: 4-15.

Tamminga, S., and M.W.A. Verstegen (1992) Implications of nutrition of animals on environmental pollution. Recent Advances in Animal Nutrition. Butterworth-Heinemann Ltd., Oxford, UK. 199pp.

Tamminga, S. (2003) Pollution due to nutrient losses and its control in European animal production. Livest. Prod. Sci. 84: 101-111.

Thomas, E. S. (2005) Biological Wastewater Treatment. Chemical Engineering. 2: 44-52.

van Groenestijn, J. W., W. N. van Heininge, and N. J. Kraakm (2001) Biofilters based on the action of fungi. Water Science and Technology. 44: 227-32.
van Lier, J. B., S. Rebac, and G. Lettinga (1996) High rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. In: Proceedings of the IAWQ-NVA International Conference on advanced wastewater treatment, Amsterdam. 1: 23-25.

van Lier, J. B., J. Rintala, J. L. Martin, and G. Lettinga (1990) Effect of short-term temperature increase on the performance of a mesophilic UASB reactor. Water Science and Technology. 22(9): 183-190.

van Loosdrecht, M. C. M., and S. J. Heijnen (1993) Biofilm bioreactors for waste-water treatment. Trends in Biotechnology. 11(4): 117-21.

Volpe, G. I. L., J. A. Christiansen, W. James, L. Roland, and R. Erik (1998) Use of a slime producing organism to enhance biomass settle ability in activated sludge and ASB systems. Tappi Journal. 81(12): 60-67.

Wajanavijai, A. (1991) Treatment of brewery wastewater using upflow anaerobic sludge blanket process. M.Sc. Thesis. Chulalongkorn University, Bangkok.

Welsh, F. W., D. D. Schulte, E. J. Kroeker, and H. M. Lapp (1977) The Effect of Anaerobic Digestion upon Swine Manure Odours. Canadian Agriculture Engineering. 19: 122-126.

Westerman, P.W., and R. H. Zhang (1997) Aeration of livestock manure and lagoon liquid for odor control: a review, Applied Engineering in Agriculture 13(2): 245-249.

Wilkie, A. and E. Colleran (1987) Microbiological aspects of anaerobic digestion. Anaerobic Treatment of Industrial Wastewaters. 1: 37-50.

Wilkie, A. C., K. J. Riedesel, and K. R. Cubinski (1995) Anaerobic digestion for odor control. p. 56-62. In: H.H. Van Horn (ed), Nuisance Concerns in Animal Manure Management: Odors and Flies. Florida Cooperative Extension Service, University of Florida, USA.

Wingender, J., T. R. Neu, and H. C. Flemming (1999) Microbial extracellular polymeric substances: Characterization, Structure and function. Springer-Verlag Berlin Heidelberg. 210pp.

Woese, D. R., O. Kandler, and M. L. Wheelis (1990) Towards a natural system of organisms : proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci USA. 87: 4756-4779.

Ye, F., Y. Chen, and X. Feng (2005) Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier. Bioresource Technology. 96(1): 115-9.

Yang, K., C. Oh, and S. Hwang (2004) Optimizing volatile fatty acid production in partial acidogenesis of swine wastewater. Water Sci. Technol. 50(8): 157-169.

Yang, W., and N. Cicek (2008) Treatment of swine wastewater by submerged membrane bioreactors with consideration of estrogenic activity removal. Desa lination. 231: 200-208.

Young, C. S., H. W. Jung, J. K. Sang, and C. K. Sung (2006) Microbial activity and population structure of anaerobic sludge alternately exposed to mesophilic and thermophilic conditions. KSCE Journal of Civil Engineering. 10(5): 319-323.

Zeeman, G., and W. Saunders (2001) Potential of anaerobic digestion of complex wastewaters. Water Science and Technology. 44: 115-122.

Zhang, L., P. Zheng, J. T.Chong, and R. C. Jin (2008) Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters. Journal of Zhejiang University. 9(5): 416-426.

Zhang, R. H., P. Yang, Z. Pan, T. D. Wolf, and J. H. Turnbull (2004) Treatment of swine wastewater with biological conversion, filtration, and reverse osmosis: A laboratory study. Trans ASAE. 47(1): 243.

Agency for Toxic Substances and Disease Registry (2007) ATSDR: Author. Retrieved April 19, 2009, from the Word Wild Web:
http: //www.hhs.gov/asl/testify/t050511.html

Edstorm Industries INC (2008) Biofilms. Coghlan: Author. Retrieved
April 15, 2009, from the Word Wild Web: http://www.destrom.com/DocLib/biofilm.html

US Environmental Protection Agency (2007) US EPA: Author. Retrieved April 3, 2009, from the Word Wild Web: http://www.epa.gov/npdes/pubs/cafo_nonwaterquality.html


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔