(3.220.231.235) 您好!臺灣時間:2021/03/08 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張靜綺
研究生(外文):Chang, Jing- Chi
論文名稱:螯合劑對烷基銅銨化合物處理材耐腐朽性之改善效果
論文名稱(外文):Improving Effects of Chelators on the Fungal Resistance of Wood Treated with Ammoniacal Copper Quats
指導教授:李鴻麟李鴻麟引用關係
指導教授(外文):Lee, Hong-Lin
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:木材科學與設計系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:O&O&O&O&O&O&O&O&
外文關鍵詞:Ammoniacal Copper Quats (ACQ)O&ampD treatmentLeachabilityChelatorFungi decay resistanceChemical retention
相關次數:
  • 被引用被引用:1
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於改善傳統ACQ處理材藥劑易流失之缺點,採用O&;D壓縮前處理與藥劑添加等方法處理木材,以有效固著處理材內之ACQ防腐藥劑,進而提升其耐腐朽效能。為評估新防腐處理方法對於處理材之性質與耐腐性,本研究將試材先經O&;D壓縮前處理後,再以加壓注入法注入6%之烷基銅銨化合物(Ammoniacal copper quats, ACQ),並以光電子光譜儀(Electron spectroscopy for chemical analysis, ESCA)、傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)與能量散射光譜分析儀(Energy dispersive X-ray analysis, EDX)等儀器,分析處理材內藥劑之銅離子(Cu)分佈及含量,並依據ASTM E10-01(2004)實木塊標準方法採用褐腐菌(Laetiporus sulphureus、Gloeophyllum trabeum)及白腐菌(Trametes versicolor)等進行耐腐朽性評估試驗。此外,為改善ACQ處理材藥劑易流失之缺點,試材以不同濃度之烷基銅銨化合物與三種螯合劑(乙二胺四乙酸,ethylene diamine tetraacetic acid, EDTA;沒食子酸丙酯,propyl gallate, PG;單寧,tannin, TA)處理,再分別進行淋溶試驗;淋溶液內與處理材之銅離子含量測定,採用感應耦合電漿光譜儀 (Inductively coupled plasma atomic emission spectroscopy, ICP-AES)與X-光螢光分析儀(X-ray fluorescence spectrometer, XRF)進行分析,以評估處理材之藥劑流失性。由研究結果顯示,不同斷面之防腐處理材經ESCA、FTIR及EDX等儀器測定分析證實,以經壓縮前處理之ACQ處理材,其藥劑滲透深度較深且均勻,而Cu含量亦較未經壓縮前處理材者高;兩種處理材經耐腐朽性試驗後,以經O&;D壓縮前處理之ACQ防腐材之質量損失率較小,具有較佳之耐腐朽性。以ICP-AES與XRF分析螯合劑對於ACQ處理材之耐淋溶性結果顯示, ACQ處理材之藥劑留存率,隨著ACQ藥劑濃度之增加而提升;6% ACQ處理材、6% ACQ與2% PG、EDTA與TA後處理材之藥劑流失率分別為37.6、26.5、36.48與11.38%;三種螯合劑中以單寧對於藥劑流失性之改善效果最優異。6% ACQ處理材經褐腐菌(L. sulphureus與G. trabeum)及白腐菌(T. versicolor)等實木塊耐腐朽性試驗後,其質量損失率分別為32.82、41.98與20.31%;而同樣的耐腐朽性試驗之6% ACQ與2%、4%或6%單寧處理材,其質量損失率皆小於2%,添加螯合劑-單寧可以有效地改善ACQ處理材之藥劑流失性與耐腐朽性。
The objective of this research was to improve the fungal resistance of wood treated with ACQ preservative. Two methods including O&D treatment and chemicals addition were individually applied together with the traditional wood preservation treatment to improve the chemical leachability in ACQ-treated wood. To evaluate the effects of O&D treatment on the chemical distribution and durability of treated-wood, tested specimens were treated with O&D treatment and then treated with 6% ammoniacal copper quats (ACQ) using full cell pressure process. Following the treatment, the concentrations and distributions of copper ion at different depth of cross section in the treated-woods were analyzed by electron spectroscopy for chemical analysis (ESCA), fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray analysis (EDX). Brown-rot fungi (Laetiporus sulphureus and Gloeophyllum trabeum) and a white-rot fungus (Trametes versicolor) were applied in soil block test for fungal decay resistance test of the treated woods as described in ASTM E10-01 (2004). Effects of chelators on the improvement of the leachability and reduction in copper ion losses in ACQ-treated wood were determined by impregnating with the different concentrations of ACQ and each one of three chemical chelator (ethylene diamine tetraacetic acid, EDTA; propyl gallate, PG; and tannin, TA). The ACQ and chelator treated-woods were further leached by distilled water. The chemical losses in the leachate as well as the concentrations of copper ion and copper contents in the treated-woods before and after leaching were further analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and x-ray fluorescence spectrometer (XRF). Results revealed that the ACQ chemical distribution and permeation in O&D treat-wood at different depth in the cross section, as analyzed by ESCA, FTIR and EDX, were more even and deeper than those of the non-O&D treated-wood. Meanwhile, O&D treated-wood showed less mass losses after exposure to soil block test than those of the non-O&D treated-wood, indicating the fungal decay resistance of wood can be improved by O&D treatment. The leachability of wood treated with chelators, as analyzed by ICP-AES and XRF, suggested that chemical retention in the ACQ treated-wood increased as increasing the concentrations of treated chemical. Following the leaching test, the chemical losses in wood treated with 6% ACQ, 6% ACQ along with each one of 2% chelator, TA, EDTA or PG, were 37.6, 26.5, 36.48 and 11.38%, respectively. Among the three chelators, wood treated with ACQ and tannin had the lowest leachability. Mass losses of 6% ACQ-treated wood after exposed to brown-rot Fungi (L. sulphureus and G. rabeumt) and a white-rot fungus (T. versicolo) in soil block test were 32.82%, 41.98% and 20.31%, respectively. However, mass losses in the same fungal decay resistance test for wood treated with 6% ACQ combined with either 2, 4 or 6% TA were all less than 2%, indicating wood treated with ACQ and chelator of tannin can effectively reduce the chemical loss and improve the fungal decay resistance of treated wood.
摘要................................................I
Abstract...........................................III
謝誌................................................V
目錄................................................VII
圖表目錄............................................X
壹、前言............................................1
貳、文獻回顧........................................4
一、木材之降解......................................4
(一)褐腐菌.........................................4
(二) 白腐菌........................................6
二、木材防腐劑應具備之條件...........................7
(一)對危害或棲息木材之生物具有足夠毒性................7
(二)需維持適當之效性及穩定性.........................8
(三)配方需能均勻滲透於木材中.........................8
(四)對哺乳動物之毒效低,不易污染環境..................8
(五)對金屬無腐蝕性..................................8
(六)配方易調配、價格低廉.............................8

三、常見木材防腐劑之介紹.............................8
(一)鉻化砷酸銅(chromated copper arsenate , CCA).....9
(二)銅硼唑化合物(ammoniacal copper azole, CuAz).....9
(三)烷基銅銨化合物(ammoniacal copper quats, ACQ)...10
四、木材防腐劑之有效成分及其抑制機制..................12
五、藥劑留存率與防腐效能之改善.......................13
(一)O&D壓縮前處理..................................13
(二)螯合劑對處理材中藥劑流失性之影響..................16
(三)使用之螯合劑....................................17
参、材料與方法......................................26
一、試驗材料........................................26
(一)試材...........................................26
(二)木材防腐藥劑....................................26
(三)木材腐朽菌......................................26
(四)培養基..........................................26
(五)土壤 ...........................................26
(六)試藥............................................27
二、試驗方法.........................................27
(一)未經與經O&D壓縮前處理之柳杉防腐材..................27
(二)試材防腐藥劑處理(含浸試驗)........................28
(三)性質分析........................................31
(四)抗腐朽性試驗....................................32
肆、結果與討論......................................37
一、O&D壓縮前處理之防腐..............................37
(一)O&D壓縮前處理之防腐材銅離子含量分析................38
(二)未經、經O&D壓縮前處理防腐材之耐腐朽性試驗...........49
二、ACQ處理材內之銅離子含量...........................55
(一)ACQ處理材經硝化後之銅離子含量.....................55
(二)ACQ處理材之藥劑留存率及其流失率測定................56
三、ACQ與螯合劑處理材之銅離子含量.....................56
(一)ACQ與螯合劑處理材之藥劑留存率與流失率測定..........56
(二)ACQ與螯合劑處理材之淋溶液中銅離子含量..............58
(三)ACQ與螯合劑處理材之銅離子含量測定.................60
(四)ACQ與螯合劑之抑菌效果............................63
(五)ACQ與單寧螯合劑處理材之耐腐朽性試驗................64
伍、結論............................................71
參考文獻............................................73
作者簡介............................................84

狄瑩、石碧 (1999) 植物單寧化學研究進展。化學通報3: 5-7。
李國旭 (2003) EDTA降解菌應用於含EDTA 工業廢水生物處理研究。國立雲林科技大學碩士論文 1-3頁。
李鴻麟、許富蘭、林勝傑 (2004) 磷酸與有機胺系藥劑化學處理對木材保存性與尺寸安定性之影響。台灣林業科學 19(4): 311-321。
李鴻麟、夏滄琪、許富蘭、林勝傑 (2005) 新型水溶性木材防腐藥劑對木材保存性與燃燒性之影響。台灣林業科學 20(2): 139-156。
林宏明、楊末雄 (1982) 感應耦合電漿-原子發射光譜分析儀 (ICP-AES) 之介紹。科儀新知 13(4): 64-71。
周慧明 (1991) 木材防腐。中華林業出版社 北京 第158-160頁。
徐明福、蔡明哲 (2002) 淺談台灣古蹟及歷史建築現有的生物防治處理方式對木構原物保存環境之影響。古蹟暨木構造白蟻防治研討會論文集,第35-41頁。
陳永祥、張裕昌、李雲嫦、趙奕姼 (2005) 對環境友善的綠色化學。科學發展 396: 51-61。
陳立軒、蕭伊琳、林啟文 (2006) 評估以HCl 與EDTA 處理受重金屬污染土壤之效率研究。科學與工程技術 2(4) : 39-44。
陳莉鵑、盧崑宗、劉正字 (2007) 竹醋液對青梗白菜生長之促進作用。台灣林業科學 22(2) : 145-157。
張上鎮 (1987) 省產室內裝潢用材之耐光性。台灣省林業試驗所研究報告季刊 2(4) : 273-282。
張上鎮、李鴻麟、顧文君 (1990) 光電子光譜儀在紙張與劣化紙張表面性質分析之應用。中華林學季刊 23(4) : 83-107。
張上鎮、吳季玲、王升陽、張惠婷 (1998) 木粉濃度與顆粒大小對木材散反射傅立葉轉換紅外線光譜分析之影響。台灣林業科學 13(1) : 11-18。
曾勝群 (2002) 利用丙烯酸電漿聚合法對雙軸延伸PTFE表面改質之研究。私立中原大學化學研究所碩士學位論文 第29-31頁。
劉 智 (2006) 季胺銅防腐劑處理和熱處理後人工林杉木的耐腐性研究。河北農業大學 第62-69頁。
簡翰中 (2004) 化學分析電子儀在分析技術上的最新應用。電子月刊 10(7) : 123-132。
雪竹靖弘 (1994) 水溶性加壓注入用防腐防蟻劑「マイトしツクACQ」 について。木材保存 20(2): 28-30。
ASTM E 10-01 (2004) Standard test method for wood preservatives by laboratory soil-block cultures. ASTM book of standards. Vol. 4.10. West Conshohochen, PA: American Society for Testing and Materials Standards, 7 p.
Bateman, E. (1922) Coal-tar and watergar-tarcreosotes: Their properties and methods of testing. U. S. Department of Agriculture Bulletin 1036.
Binbuga, N., K. Chambers1, W. P. Henry1, and T. P. Schultz (2005) Metal chelation studies relevant to wood preservation. Ⅰ. Complexation of propyl gallate with Fe2+. Holzforschung 59: 205-209.
Cooper, P. A. (1994) Leaching of CCA: is it a problem? pp.45-47. In: Copper r, P. A. editor. Environmental considerations in the manufacture, use and disposal of pressure-treated wood. Forest Products Society, Madison, WI. 234 pp.
De Bruyne, T., L. Pieters, H. Deelstra and A. Vlietinck (1999) Condensed vegetable tannins: Biodiversity in structure and biological activities. Biochemical Systematics and Ecology 27: 445-459.
DeGroot, R. C. and J. Evans (1999) Does more preservative mean a better product? Forest Products Journal 49(9): 59-68.
DeGroot, R. C., D. M. Crawford, J. Norton and J. Keith (2000) Five-year field trials using preservative-treated, second-growth douglas-fir exposed in ground contact in Australia. Forest Products Journal 50(2): 46-53.
Farkas, E. , E. Enyedi and H. Csoka (2000) Some factors affecting metal ion-monohydroxamate interactions in aqueous solution. Journal of Inorganic Biochemistry 79: 205-211.
Finholt, R.W., W. Maurice and C. Hathaway (1952) New theory on wood preservation. Industrial and Engineering Chemistry 44: 101-105.
Garraway, M. O. and R. C. Evans (1984) Fungal nutrition and physiology. New York: J Wiley. p.401
Goodell, B. (2003) Brown-rot fungal degradation of wood: Our evolving view. In: Goodell, B., D.D. Nicholas and T.P. Schultz, editors. Wood deterioration and preservation: Advances in our changing world. American Chemical Society Symposium Series 845, Washington, DC. Chapter 6.
Green, F. and T. P. Schultz (2003) New environmentally-benign concepts in wood protection: The combination of organic biocides and non- biocidal chelator. Wood Deterioration and Preservation p.384
Hagerman, A. E., K. M. Riedl, A. G. Jones, K. N. Sovik, N. T. Ritchard, P. W. Hartzfeld and T. L. Riechel (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry 46(5) : 1887-1892.
Haygreen, J. C. and J. L. Bowyer (1996) Wood and water. In: Haygreen J. G. and J. L. Bowyer, editors. Forest Products and Wood Science. Iowa State University Press. USA. pp. 155-175.
Heil, D. M., Z. Samani, A. T. Hanson and B. Rudd (1999) Remediation of lead contaminated soil by EDTA. I. Batch and column studies. Water, Air, and Soil Pollution 113: 77-95.
Hingston, J. A., C. D. Collins, R. J. Murphy and J. N. Lester (2001) Leaching of chromated copper arsenate wood preservatives: A review. Environmental Pollution 111: 53-66.
Highley, T. L. (1975) Poperties of cellulases of two brown-rot fungi and white-rot. Wood Science and Technology 6(4): 275-281.
Highley, T. L., C. A. Clausen, S. C. Croan, F. Green III, B. L. Illman and J. A. Micales (1994) Research on Biodeterioration of Wood, 1987-1992. I. Decay mechanisms and biocontrol. Forest Products Laboratory, Research Paper FPL - RP- 529. p.6.
Hsu, F. L., H. T. Chang and S. T. Chang (2007) Evaluation of antifungal properties of octyl gallate and its synergy with cinnamaldehyde. Bioresource Technology 98: 734-738.
Hunt, G. M. and G. A. Garratt (1952) Wood Preservation. McGram-Hill, NY pp.72-129.
Jellison, J., J. Connolly, B. Goodell, B. Doyle, B. Illman, F. Fekete and A. Ostrofsky (1997) The role of cations in the biodegradation of wood by the brown rot fungi. International Biodeterioration and Biodegradation 39(2-3) : 165-179.
Katz, S. A. and H. Salem (2005) Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: A review. Journal of Applied Toxicology 25: 1-7.
Kirk, T. K. (1973) Polysaccharide integrity as related to the degradation of lignin in wood by white-rot fungi. Phytopathology 63: 1504-1507.
Kirk, T. K. (1984) Biological decomposition of solid wood. In: Rowell, R. M. , editor. The chemistry of solid wood. Washington DC: American Chemical Society pp.455-483.
Laks, P. E., P. A. McKaig and R. W. Hemingway (1988) Flavonoid biocides: Wood preservatives based on condensed tannins. Holzforschung 42: 299-306.
Levi, W., A. Paul and Y. T. Ung (2005) Prediction of long-term leaching potential of preservative treated wood by diffusion modeling. Holzforschung 59: 581-588.
Mabicka, A., S. Dumarcay, N. Rouhier, M. Linder, J.P. Jacquot, P. Ge´rardin and E. Gelhaye (2005) Synergistic wood preservatives involving EDTA, irganox 1076 and 2-hydroxypyridine-N-oxide. International Biodeterioration and Biodegradation 55: 203-211.
Messner, K., K. Fackler, P. Lamaipis, W. Gindl, E. Strebotnik and T. Watanabe (2003) Over riew of white-fungi reserch: Where we are today. pp.73-96. In: B. Goodell, D. D. Nicholas and T. P. Schultz, editors. Wood Deterioration and Preservation. American Chemical Society, Washington, DC. p.465
Micklewright, J. T. (1998) Wood preservation statistics 1997. American Wood Protection Association Granbury, TX.
Mohana, D., J. Shi, D. D. Nicholas, C. U. Pittman, P. H. Steele and J. E. Cooper (2007) Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/ bark fast pyrolysis. Chemosphere 71(3): 456-465.
Murmanis, L. L., T. L. Highley and J. Ricard (1988) Hyphal interaction of Trichoderma harzianum and Trichoderma polysporum with wood decay fungi. Material und Organismen 23: 271-279.
Nicholas, D. D. and T. P. Schultz (1994) Biocides that have potential as wood preservatives. pp.169-173. In: Wood Preservative in the 90’s and Betoud. Forest Products Society, Madison. p.256
Ong, S. K. and C. Kim (1999) Recycling of lead contaminated EDTA wastewater. Journal of Hazardous Materials 69: 273-286.
Porandowski, J., P. A. Cooper, M. Kaldas and Y. T. Ung (1998) Evolution of CO2 during the fixation of chromium containing wood preservatives on wood. Wood Science and Technology 32: 15-24.
Ratajczak, I., S. K. Hoffmann, J. Goslar and M. Bartlomiej (2008) Fixation of copper(II)- protein formulation in wood: Part 1. Influence of tannic acid on fixation of copper in wood. Holzforschung 62: 294-299.
Richardson, B. A. (1993) Wood preservatives. E and FN Spon, London, pp.97-151.
Sanders, J. G. and H. L. Windom (1980) The uptake and reduction of a rsenic species by marine algae. Environment 10: 555-567.
Sanders, J. G and G. F. Riedel (1987) Control of trace element toxicity by phytoplankton. Recent Advance Phytochemistry 21: 131-149.
Salazar, S. G., J. S. Lee, J. C. Heydweiller and L. L. Tavlarides (2003) Analysis of cadmium adsorption on novel organo-ceramic adsorbents with a thiol functionality. Industrial and Engineering Chemistry Research 42: 3403-3404.
Schultz, T. P. and D. D. Nicholas (2000) Naturally durable heartwood: Evidence for a proposed dual defensive function of the extractives. Phytochemistry 54: 47-52.
Schultz, T. P. and D. D. Nicholas (2002) Development of environmentally- benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry 61: 555-560.
Schultz, T. P. and D. D. Nicholas (2003) A brief overview of non-arsenical wood preservative system. pp.420-432. In: B. Goodell, D., D. Nicholas and T. P. Schultz, editors. Wood Deterioration and Preservation. American Chemical Society, Washington, DC. p.465.
Silim, H. A. (2005) FTIR spectroscopy and structure of the binary glass Cu2O-MoO3 system. Egyptian Journal of Solids 28(1): 15-23.
Tascioglu, C., P. Cooperand T. Ung (2008) Effects of fixation temperature and environment on copper speciation in ACQ treated red pine. Holzforschung 62: 289-293 .
Tucker, E. J. B., A. Bruce and H. J. Staines (1997) Application of modified international wood preservative chemical testing standard for assessment of biocontrol treatments. International Biodeterioration and Biodegradation 39: 189-197.
Udovic, M. and D. Lestan (2007) EDTA leaching of Cu contaminated soils using ozone/ UV for treatment and reuse of washing solution in a closed loop. Water Air Soil Pollution 181: 319-327.
Ung, Y. T. and P. A. Copper (2004) Effective of species, retention and conditioning temperature on copper stabilization and leaching for ACQ-D. A.I.G/WP 04-30342.
Ung, T. Y. and P. A. Copper (2005) Copper stabilization in ACQ-D treated wood: Retention, temperature and species effects. Holzforschung 63: 186-191.
Walker, L. E. (1994) Alkylammonium compounds as wood preservatives. pp.220-229. In: Wood Preservative in the 90’s and Betoud. Forest Products Society, Madison. p.256.
Weis, P. and J. S. Weis (1999) Accumulation of metals in consumers associated with chromate copper arsenate-treated wood panels. Marine Environmental Research 48: 73-81.
Yamaguchi, H. and T. Okamura (1995) Environmental safeguards and wood preservatives. Utilization of tannin-metal complex (in Japanese). Wood Industry (Mokuzai Kougyo) 50: 155-159.
Yamaguchi, H. and K. Okuda (1998) Chemically modified tannin and tannin-copper complexes as wood preservatives. Holzforschung 52: 596-602.
Yamaguchi, H. and K. Yoshino (2001) Influence of tannin-copper complexes as preservatives for wood on mechanism of decomposition by brown-rot fungus Fomitopsis palustris. Holzforschung 55: 464-470.
Yildiz, U. C., A. Temiz, E. D. Gezer and S. Yildiz (2004) Effects of the wood preservatives on mechanical properties of yellow pien (Pinus sylvestris L.) wood. Building and Environment 39: 1071-1075.
Zhang, Y., J. Y. Tang, G. L. Wang, M. Zhang and X. Y. Hu (2006) Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. Journal of Crystal Growth 294(2): 78-282.
行政院環境保護署 (2006) 鉻化砷酸銅防腐劑處理的木材不得用於居家用途。2007年3月25日,取自:http: //myurl.com.tw/16lo
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔