(3.238.96.184) 您好!臺灣時間:2021/05/08 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉芸君
研究生(外文):Yun-chun Liu
論文名稱:探討盤狀液晶分子在矽晶圓表面的堆疊型態
論文名稱(外文):Investigation of the stacking phenomenon of discotic liquidcrystal on silicon surface
指導教授:謝淑貞謝淑貞引用關係
指導教授(外文):Shu-chen Hsieh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:102
中文關鍵詞:原子力顯微鏡盤狀液晶
外文關鍵詞:Discotic liquid crystalAFM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
盤狀液晶(Discotic liquid crystal)是一種具有剛硬的芳香環核心,以及具有側鏈的分子;分子間會以π-π作用力自動排列成一維的管柱狀結構,而產生電子傳輸能力的性質。近年來,使用溶液法,將盤狀液晶分子沉積到固態表面製程的電子元件,已廣泛被應用在太陽能電池(solar cell)、有機發光二極體(OLED)、organic photovoltaic、場效電晶體(FET)及分子通道…等。盤狀液晶分子在固態表面有不同的堆疊方式,對元件表面型態會有不同的影響。因此有效的控制盤狀液晶分子在表面的堆疊,有助於電子元件效能的提升。
本研究專注於探討含有酯及酸不同官能基的這對盤狀液晶分子在矽晶圓表面是如何的堆疊;在本論文中,我們先使用一維變濃度NMR計算的方式,量測盤狀液晶酯在不同有機溶劑中的聚集情形,結果顯示盤狀液晶酯在不同有機溶劑中(CH2Cl2、THF、Benzene)確實有不同大小的自聚集能力,大小依序為: THF > CH2Cl2 > Benzene。
除此之外,我們更改變不同條件;例如溶劑、表面官能基及溫度,探討這對含有酸及酯官能基的盤狀液晶分子矽晶圓表面的堆疊情形為何?在改變溶劑部分:實驗結果顯示,使用不同極性和不同揮發速度的有機溶劑,確實會造成盤狀液晶酯分子在矽晶圓表面形成不同的堆疊型態。在改變表面官能基部分:實驗結果顯示:酯類盤狀液晶受表面不同官能基的影響較酸小,不會因為表面不同官能基所造成的競爭因子(competing factor)而影響分子分子間作用力;分子和表面有較小作用力的,在表面形成長鏈(Ester)的堆疊,而分子和表面有較大作用力的,在表面形成短鏈(Acid)的堆疊;含CH3官能基(較疏水的表面),推測因為溶劑在表面潤濕不易,所以造成溶劑無法帶著分子在表面形成短鏈或長鏈的堆疊;在改變溫度部分:不論是盤狀液晶酸還是盤狀液晶酯,當溫度上升,表面的分子會被較大分子堆疊的地方所吸引而形成更大的聚集,及分子堆疊的長度有逐漸變短的現象。
Discotic liquid crystal (LC) molecules have a structure that is comprised of a rigid aromatic core with side-chain molecules. Intermolecular π-π interactions force the tube to orient and form one-dimensional columnar structures which can act as molecular wires. In recent years, discotic LC molecules have been deposited on surfaces from solution to create the solid-state electronic elements used widely in solar cells, organic light-emitting diodes (OLED), organic photovoltaic, field-effect transistors (FET), and molecular wires. Different stacking morphologies can change the behavior of the material and thus will have potential for different applications. Hence, effective control over the stacking of the LC molecules on surfaces is important for optimizing the performance and effectiveness of LC-based electronic components and devices.
This study has focused on LC molecules with acid and ester containing functional groups, and how these groups influence the stacking behavior on surfaces. Here, the self-aggregation behavior of the discotic LC ester in solution was investigated quantitatively by determining the concentration dependence of the 1H NMR chemical shifts. Our results showed that discotic LC ester has different self-aggregation behavior in CH2Cl2, THF and Benzene organic solvents. THF solvent showed the highest degree of aggregation, followed by CH2Cl2, and then benzene.
We also studied the effects of (i) different solvents (THF, CH2Cl2, and Benzene), (ii) different surface functional groups (OH, CH3, NH2, SH, and diphenyl), and (iii) temperature, on the stacking phenomenon of discotic LCs on silicon surfaces. In part (i) our results showed that discotic LC ester had different morphologies on silicon surfaces due to differences in solvent polarity and evaporation rate. In part (ii), we observed that different surface functional groups did not affect the intermolecular interaction between either the ester- or acid-type LC molecules. For the acid-type LC, strong hydrogen bonding interactions with the surface caused the crystals to form rod-like fiber structures. However, the ester-type LC molecules formed ribbon-like stacks on the surfaces. For functional groups containing CH3 (more hydrophobic surfaces), we observed no LC molecules on the surface, which was likely due to the poor wettability of the solvents on OTS. In part (iii), we observed that both acid and ester discotic LCs formed large aggregates on the surfaces due to a “ripening effect”. With increased temperature, the molecules were able to overcome the wetting interaction with the surface and self-aggregate into three-dimensional clusters.
第一章 序論 1
1-1 液晶的發明 1
1-2 液晶的分類 2
1-2.1 桿狀液晶 2
1-3 盤狀液晶 5
1-3.1 向列型盤狀液晶 5
1-3.2 管柱型盤狀液晶(Columnar) 6
1-4 盤狀液晶的應用 9
1-4.1 液晶顯示器-視角補償膜 9
1-4.2 太陽能電池 10
1-4.3 場效電晶體 (FETs) 11
1-4.4 分子通道 13
1-4.5 有機發光二極體(OLED) 13
1-5 研究目的 14
第二章 實驗部份 17
2-1接觸角量測儀 17
2-1.1 原理 17
2-1.2 實驗使用的接觸角儀 19
2-2紅外線光譜儀 19
2-2.1 原理 19
2-2.2 實驗使用的紅外線光譜儀 21
2-2.3 參數設定 21
2-3原子力顯微鏡 23
2-3.1 基本原理 23
2-3.2 AFM的操作模式 26
2-3.3 AFM的應用與用途 28
2-3.4 實驗使用的AFM儀器 28
2-4核磁共振儀 29
2-4.1 原理 29
2-4.2實驗使用的核磁共振儀器 29
2-5實驗使用的材料 30
2-5.1基板(Silicon substrate) 30
2-5.2 盤狀液晶化合物 31
2-5.3 有機溶劑 31
2-5.4 Organic silane(自組裝的母液) 32
2-6 基板處理過程 32
2-6.1 基板前處理 32
2-6.2 製備不同官能基的表面 33
2-7 溶液配置 33
2-8 樣品製備 34
第三章 結果與討論 35
3-1盤狀液晶酯類在不同有機溶劑中的聚集情形 35
3-2 溶劑對盤狀液晶酯類堆疊的影響 41
3-3 表面不同官能基對盤狀液晶酯及盤狀液晶酸堆疊的影響 50
3-4 溫度對盤狀液晶酯及盤狀液晶酸堆疊的影響 66
第四章 結論 79
參考文獻 80
1. F. Reinizerr, Monatshefte fur Chemie 1888, 9, 421-441.
2. Lehmann O, Physik Z., Chem, 1889, 4, 462-467.
3. Kumar, S. Chemical Society Reviews 2006, 35, 83-109.
4. 松本正一、角田市良,劉瑞祥譯,液晶之基礎與應用,國立編譯館出版,1996。
5. 楊宜寬、郭蘭生、鄭殷立 編譯,液晶化學及物理入門,偉明圖書有限公司,2001。
6. Kawata, K. Chemical Record 2002, 2, 59-80.
7. Kumar, S. Current Science 2002, 82, 256-257.
8. Tsao, H. N.; Rader, H. J.; Pisula, W.; Rouhanipour, A.; Mullen, K. Physica Status Solidi a-Applications and Materials Science 2008, 205, 421-429.
9. Hager, Hanker, J. Am. Pharm. Assoc., 1995, 44, 138-141.
10. Hudson, S. A.; Maitlis, P. M. Chemical Reviews 1993, 93, 861-885.
11. Pisula, W.; Kastler, M.; Wasserfallen, D.; Mondeshki, M.; Piris, J.; Schnell, I.; Mullen, K. Chemistry of Materials 2006, 18, 3634-3640.
12. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119-1122.
13. Foster, E. J.; Lavigueur, C.; Ke, Y. C.; Williams, V. E. Journal of Materials Chemistry 2005, 15, 4062-4068.
14. Lavigueur, C.; Foster, E. J.; Williams, V. E. Journal of the American Chemical Society 2008, 130, 11791-11800.
15. Martin, R. B. Chemical Reviews 1996, 96, 3043-3064.
16. Giessner-Prettre, C.; Pullman, B.; Borer, P. N.; Kan, L.-S.; Ts''o, P.O. Biopolymers 1976, 15, 2277-2286.
17. Lahiri, S. L.; Thompson, J. L.; Moore, J. S. J. Am. Chem. Soc. 2000, 122, 11315-11319.
18. Shetty, A. S.; Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1996, 118, 1019-1027.
19. Hoger, S.; Bonrad, K.; Mourran, A.; Beginn, U.; Moller, M. J. Am. Chem. Soc. 2001, 123, 5651-5659.
20. Horman, I.; Drewx, B. HelV. Chim. Acta 1984, 67, 754-764.
21. Nakamura, K.; Okubo, H.; Yamaguchi, M. Org. Lett. 2001, 3, 1097-1099.
22. Lavigueur, C.; Foster, E. J.; Williams, V. E. Journal of the American Chemical Society 2008, 130, 11791-11800.
23. Kastler, M.; Pisula, W.; Wasserfallen, D.; Pakula, T.; Mullen, K. Journal of the American Chemical Society 2005, 127, 4286-4296.
24. Li, J.; Tammer, M.; Kremer, F.; Komp, A.; Finkelmann, H. European Physical Journal E 2005, 17, 423-428.
25. Cheng, Y. C.; Wang, X.; Cheng, J. B.; Sun, L.; Xu, W. Q.; Zhao, B. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2005, 61, 905-911.
26. Palermo, V.; Morelli, S.; Simpson, C.; Mullen, K.; Samori, P. Journal of Materials Chemistry 2006, 16, 266-271.
27. Mutch, K. J.; Koutsos, V.; Camp, P. J. Langmuir 2006, 22, 5611-5616.
28. Liu, D. J.; De Feyter, S.; Cotlet, M.; Wiesler, U. M.; Weil, T.; Herrmann, A.; Mullen, K.; De Schryver, F. C. Macromolecules 2003, 36, 8489-8498.
29. Peter Atkins, Julio de Paula. Physical Chemistry, seven edition, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔