(3.238.235.155) 您好!臺灣時間:2021/05/11 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾詩雅
研究生(外文):Shih-ya Tseng
論文名稱:使用老鼠下肢缺血模式探討Cilostazol的血管新生效應
論文名稱(外文):Angiogenic effect of cilostazol in murine hindlimb ischemia model
指導教授:卓忠隆
指導教授(外文):Chung-Lung Cho
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:60
中文關鍵詞:第三型磷酸雙酯酶血管新生下肢缺血
外文關鍵詞:angiogenesishindlimb ischemiaphosphodiesterase type III
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血管生長包含幾個機轉例如血管新生(angiogenesis)、以及血管系形成(vasculogenesis)。血管新生主要是在既有的血管上萌發新生血管,基本上認為和組織缺血後血管新生因子的調控有關。
Cilostazol是目前治療周邊動脈狹窄引致間歇性跛行的常規用藥,主要因為具有抗血小板以及血管擴張效果。其藥理作用機轉乃是抑制第三型磷酸雙酯酶(phosphodiesterase type III),以增加細胞內環狀單磷酸腺苷(cyclic AMP)。特別的是很多證據顯示,該藥品尚有很多細胞效應。
在本論文研究, 我們的結果顯示出cilostazol有促進HUVECs細胞增生,移行,有效在體外增加血管形成並且增加cAMP和NO的表現。 我們發現cilostazol是由PIK 3/Akt將eNOS磷酸化而引發HUVECs的趨化作用。 同時我們也使用小鼠下肢缺血模式探討cilostazol的血管新生及血管系形成效應, 這些結果暗示著cilostazol是可以有效的促進下肢血管新生本研究有關。 cilostazol的探討是創新且特別的,對於學術將具重大衝擊,並且將來可能幫助cilostazol在其他重大組織缺血如心肌缺血梗塞的基礎和臨床研究,以造福廣大人類。
Blood vessel growth is mediated by angiogenesis, which is defined as the formation of new blood vessel out of existing vessels, as well as vasculogenesis, a process that circulating progenitor cells contributes to adult neovascularization.
Cilostazol, a commercially available drug holding antiplatelet and vasodilating effects, increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibiting the activity of phosphodiesterase 3. Interestingly, this chemical compound has a lot of cellular effects.
In current work, we demonstrated that cilostazol promoted proliferation and migration of human umbilical cord vein endothelial cells (HUVECs), enhanced in-vitro vascular tube formation, and increased releasing of cAMP and NO from them. Furthermore, cilostazol activated eNOS and PI3-K/Akt signaling pathways. We also examined the angiogenic and vasculogenic effects of cilostazol in a murine hindlimb ischemia model.
Our data showed that cilostazol enhanced angiogenesis and vasculogenesis with resultant flow recovery after murine hindlimb ischemia partly mediated by promoting mobilization of bone marrow-derived stem cells into circulation and increasing in situ expression of some proteins involved in angiogenesis. In addition, cilostazol significant increased colony forming unit of human endothelial progenitor cells. These results are unique and clinically significant with potential in translational therapy. According to our report, further preclinical and clinical studies of cilostazol on the other ischemic situations such as myocardial infarction will be justified.
Abstract ------------------------------------------------------------------------------------ 1
Abstract in Chinese----------------------------------------------------------------------2
Acknowledgements-----------------------------------------------------3
Abbreviation----------------------------------------------------------4
Chapter 1 Introduction
Ⅰ. Angiogenesis---------------------------------------------------------------------9
Ⅱ. The pharmacology of cilostazol ------------------------------------------------10
Ⅲ. Signal transductions involved in angiogenesis---------------------------------------12
Chapter 2 Material and Methods
I. Reagents-----------------------------------------------------------------------------------16
II. Antibody----------------------------------------------------------------------------------16
III. Assay kits--------------------------------------------------------------------------------17
IⅤ. Preparation of medium, buffer, and solution--- -----------------------------------17
V. Amimals and amimals care -----------------------------------------------------------19
Methods
I. Isolation and counting of endothelial progenitor cells -----------------------------19
II. Culture of human umbilical cord vein endothelial cells---------------------------20
III. Cell proliferation assay----------------------------------------------------------------20
IV. Chemotaxis assay----------------------------------------------------------------------20
V. Measurement of nitric oxide production---------------------------------------------21
VI. Measurement of cyclic AMP (cAMP) level ---------------------------------------21
VII. Tube formation -----------------------------------------------------------------------21
VIII. Assays of eNOS and AKT phosphorylation in HUVECs----------------------21
IX. Mouse hindlimb ischemia model----------------------------------------------------22
X. Measurement of blood flow enhancement------------------------------------------22
XI. Measurement of capillary density in the ischemic leg---------------------------22
XII. Gelatin-base zymography---------------------------------------------------------- 23
XIII. Western blot analysis of ischemic muscles -------------------------------------23
XIV. Flow cytometery analysis of detect peripheral blood CD34+ mononuclear cells------------------------------------------------------------------------------------24
Statistical Analysis----------------------------------------------------------24
Cpapter 3 Results
I. Cilostazol increased early human EPC numbers------------------------------------25
II. Effect of cilostazol on HUVEC proliferation---------------------------------------25
III. Effect of cilostazol on HUVECs migration----------------------------------------25
IV. Cilostazol induced nitric oxide production----------------------------------------26
V. Cilostazol induced cyclic-AMP production----------------------------------------26
VI. Cilostazol promoted vascular tube formation on Matrigel----------------------26
VII. Cilostazol induced phosphorylation of eNOS and Akt on HUVECs.--------27
VIII. Enhancement of blood flow recovery by cilostazol in hindlimb ischemia
ICR mice----------------------------------------------------------------------------27
IX. Cilostazol normalizede VEGF expression and eNOS phosphorylation in ischemic
muscle of ICR mice-------------------------------------------------------------------28
X. Cilostazol enhanced MMP-2 and MMP-9 activity in ischemic muscle in ICR mice-------------------------------------------------------------------------------------28
XI. Capillary density was significantly increased in cilostazol treated mice------28
XII. Cilostazol increased of CD34+ cells ----------------------------------------------29
Chapter 4 Discussion-------------------------------------------------------30
References-------------------------------------------------------------------------------35
Figures------------------------------------------------------------------------------------44
References
Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. Angiogenesis Assays: A Critical Overview. Clin Chem. 2003;49:32-40

Boo YC, Hwang J, Sykes M, Michell BJ, Kemp BE, Lum H, Jo H. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol Heart Circ Physiol. 2002;283:1819-1828.

Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737-744.

Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–660.

Dawson DL, Cutler BS, Hiatt WR, Hobson RW 2nd, Martin JD, Bortey EB,
A comparison of cilostazol and pentoxifylline for treating intermittent claudication. Am J Med. 2000;109:523-30.

Development of a novel, weighted, quantifiable stroke scale: Japan stroke scale. Gotoh F, Terayama Y, Amano T. Stroke. 2002;33:1171

D''Angelo FA, Ramacciato G, Aurello P, Lauro S, Caramitti A, Lalle M, Magri M. Alternative insertion sites for permanent central venous access devices. Eur J Surg Oncol. 1997 Dec;23(6):547-9.

Dimmeler S, Zeiher AM. Nitric oxide-an endothelial cell survival factor.
Cell Death Differ. 1999;6:964-968. Review.

Elam MB, Heckman J, Crouse JR. Effect of the novel antiplatelet agent cilostazol on plasma lipoproteins in patients with intermittent claudication. Arterioscler Thromb Vasc Biol. 1998;18:1942-1947.

Favot L, Keravis T, Holl V, Le Bec A, Lugnier C. VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors. Thromb Haemost. 2003;90:334-43.

Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267:10931–10934.

Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995;81:727-736.

Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Regulation of endothelium-derived nitric oxide production by the protein kinase Akt.Papapetropoulos A, Sessa WC. Nature. 1999;399:597-601.

Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000;52:237-68.

Goto F, Goto K, Weindel K, Folkman J. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest. 1993;69:508-517.

Hashimoto, A., Miyakoda, G., Hirose, Y., Mori, T. Activation of endothelial nitric oxide synthase by cilostazol via a camp/protein kinase aand phosphatidylinositol 3-kinase/akt-dependent mechanism. Atherosclerosis. 2006; 189, 350–357.

Ikeda Y. Antiplatelet therapy using cilostazol, a specific PDE3 inhibitor. Thromb Haemost. 1999;82:435-8. Review.

Judah F, Yuen S. Angiogenesis. J Bio Chem. 1992;267:10931-10934.

Karsten S. The pharmacology of cilostazol. Diabetes, Obes and Metabo.. 2002;4:S14-S19.

Kambayashi J, Liu Y, Sun B, Shakur Y, Yoshitake M, Czerwiec F. Cilostazol as a unique antithrombotic agent. Curr Pharm Des. 2003;9:2289-2302.

Kim KY, Moon JI, Lee EJ, Lee YJ, Kim IB, Park CK, Oh SJ, Chun MH. The effect of L-arginine, a nitric oxide synthase substrate, on retinal cell proliferation in the postnatal rat. Dev Neurosci. 2002;24:313-321.

Kohda N, Tani T, Nakayama S. Effect of cilostazol, a phosphodiesterase III inhibitor, on experimental thrombosis in the porcine carotid artery. Thromb Res. 1999; 96:261-268.

Kwon SU, Cho YJ, Koo JS. Cilostazol Prevents the Progression of the Symptomatic Intracranial Arterial Stenosis: The Multicenter Double-Blind Placebo-Controlled Trial of Cilostazol in Symptomatic Intracranial Arterial Stenosis. Stroke. 2005; 36:782-786.
Kimura Y, Tani T, Kanbe T, Watanabe K. Effect of cilostazol on platelet aggregation and experimental thrombosis. Arzneimittelforschung. 2005;36:782-786.

Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109:II27-33.

Lee JH, Oh GT, Park SY, Choi JH, Park JG, Kim CD, Lee WS, Rhim BY, Shin YW, Hong KW. Cilostazol reduces atherosclerosis by inhibition of superoxide and tumor necrosis factor-alpha formation in low-density lipoprotein receptor-null mice fed high cholesterol. J Pharmacol Exp Ther. 2005;313:502-9.

Liu Y, Fong M, Cone J, Wang S, Yoshitake M, Kambayashi J. Inhibition of adenosine uptake and augmentation of ischemia-induced increase of interstitial
adenosine by cilostazol, an agent to treat intermittent claudication. J Cardiovasc Pharmacol. 2000;36:351-360.

Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170:3369-3376.

Lugnier, C. Cyclic nucleotide phosphodiesterase (pde) superfamily: a
new target for the development of specific therapeutic agents. Pharmacol. Ther. 2006;109,366–398

Ma PC, Blaszkowsky L, Bharti A, Ladanyi A, Kraeft SK, Bruno A, Skarin AT, Chen LB, Salgia R. Circulating tumor cells and serum tumor biomarkers in small cell lung cancer. Anticancer Res. 2003;23:49-62. Review.

Morishita R, Aoki M, Nakamura S, Matsushita H, Tomita N, Hayashi S, Moriguchi A, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Potential role of a novel vascular modulator, hepatocyte growth factor (HGF), in cardiovascular disease: characterization and regulation of local HGF system. J Atheroscler Thromb. 1997;4:12-19.

Munoz, Chapuli, R., A. R. Quesada, M. Angel . Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci . 2004; 61:2224-2243

Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation. 1998;97:99-107.

Murphy G. Matrix metalloproteinases and their inhibitors. Acta Orthop Scand Suppl. 1995;266:55-60. Review.

Nakamura T. Definition and classification of osteoporotic vertebral fracture. Clin
Calcium. 2001;11:1176-1181

Nakamura T, Kanda S, Yamamoto K, Kohno T, Maeda K, Matsuyama T, Kanetake H. Increase in hepatocyte growth factor receptor tyrosine kinase activity in renal carcinoma cells is associated with increased motility partly through phosphoinositide 3-kinase activation.Oncogene. 2001;20:7610-7623.

Netherton SJ, Maurice DH. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis.
Mol Pharmacol. 2005;67:263-272.

Norgen L, Hiatt WR, Harris KA, Lammer J, TASC II Working Group. TASC II section F on revascularization in PAD. J Endovase Ther. 2007;14:734-742.

Park, S.Y., Lee, J.H., Kim, C.D., Lee, W.S., Park, W.S., Han, J., Kwak, Y.G.,
Kim, K.Y., Hong, K.W. Cilostazol suppresses superoxide production and expression of adhesion molecules in human endothelial cells via mediation of camp-dependent protein kinase-mediated maxi-k channel activation. J. Pharmacol. Exp. Ther. 2006;317:1238–1245.
Papapetropoulos A, Desai KM, Rudic RD, Mayer B, Zhang R, Ruiz-Torres MP, García-Cardeña G, Madri JA, Sessa WC. Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. Am J Pathol. 1997;150:1835-44.

Park SY, Lee JH, Kim YK, Kim CD, Rhim BY, Lee WS, Hong KW. Cilostazol prevents remnant lipoprotein particle-induced monocyte adhesion to endothelial cells by suppression of adhesion molecules and monocyte chemoattractant protein-1 expression via lectin-like receptor for oxidized low-density lipoprotein receptor activation. J Pharmacol Exp Ther. 2005;312:1241-1248.

Peter C. Angiogenesis in health and disease. Na Med. 2003;9:653-660

Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol. 2004;97:1119-28.

Robless P, Mikhailidis DP, Stansby GP. Cilostazol for peripheral arterial disease. Cochrane Database Syst Rev. 2008 ;1:CD003748.

Schnaper HW, Kopp JB, Poncelet AC, Hubchak SC, Stetler-Stevenson WG, Klotman PE, Kleinman HK. Increased expression of extracellular matrix proteins and decreased expression of matrix proteases after serial passage of glomerular mesangial cells. J Cell Sci. 1996;109:2521-8.

Sepúlveda P, Martinez-León J, García-Verdugo JM. Neoangiogenesis with endothelial precursors for the treatment of ischemia. Transplant Proc. 2007;39:2089-94. Review.
Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and
angiogenesis. Circ Res. 2002;90:1243-1250. Review.

Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature. 1998;393:790-793.

Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200:448-464. Review.

Tamai Y, Takami H, Nakahata R, Ono F, Munakata A. Comparison of the effects of acetylsalicylic acid, ticlopidine and cilostazol on primary hemostasis using a
quantitative bleeding time test apparatus. Haemostasis. 1999;29:269-276.

Tjon JA, Riemann LE. Treatment of intermittent claudication with pentoxifylline and cilostazol. Am J Health Syst Pharm. 2001;58:485-93:quiz494-496.

Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J.
Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–248.

Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995;267:2003-2006.

Yi-Lu Y, Wen-Zhen S, Wei-Ping Z, Meng-Ling W, Yu Z, San-Hua F, Li-Ying L, Qi Z, Yue-Ping Y, Er-Qing W. Cilostazol, a phosphodiesterase 3 inhibitor, protects mice against acute and late ischemic brain injuries. Eur J Pharmacol. 2007;557:23-31

Zhang XP, Tada H, Wang Z, Hintze TH. cAMP signal transduction, a potential compensatory pathway for coronary endothelial NO production after heart failure. Arterioscler Thromb Vasc Biol. 2002;22:1273-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔