跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/25 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高英賢
研究生(外文):Ying-hsien Kao
論文名稱:探討肝癌衍生生長因子在肝臟纖維化機制中所扮演的病理性角色
論文名稱(外文):Investigation on the Pathological Role of Hepatoma-Derived Growth Factor in Hepatic Fibrogenesis
指導教授:戴明泓趙大衛趙大衛引用關係
指導教授(外文):Ming-hong TaiDavid Chao
學位類別:博士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:122
中文關鍵詞:肝癌衍生生長因子肝臟纖維化肝細胞乙型轉形生長因子
外文關鍵詞:hepatoma-derived growth factorliver fibrosishepatocytestransforming growth factor-beta
相關次數:
  • 被引用被引用:0
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
肝臟纖維化的病理病變常導致器官功能障礙而致命,臨床上是肝膽腸胃道疾病中被探討的主要課題之一。目前認為肝臟纖維化的過程是組織受到各種不同的慢性刺激所誘發的一種傷口癒合反應。纖維化組織具有過量細胞外基質蛋白的堆積,這些堆積的蛋白常會破壞肝臟的正常結構,最後導致器官病理性破壤。肝癌衍生生長因子(hepatoma-derived growth factor)是一純化自肝癌細胞株培養上清液之生長因子,與陸續發現的另五個相關蛋白組成一組蛋白家族。肝癌衍生生長因子在胚胎發育時期的肝組織中大量表現,被認為在細胞分裂、器官生成、胚胎形成、與腫瘤發生等過程中扮演多功能角色。先前的研究中已證實肝癌衍生生長因子在肝癌組織中有過度表現的現象,其表現程度與肝癌細胞的生長呈正相關,並可作為一良好預後指標性蛋白。由於肝臟纖維化常在肝癌臨床病徵發現之前即已出現,因此本研究主要探討利用膽管結紮手術與注射四氯化碳化學物質所誘發之肝臟纖維化之兩種小鼠動物模式中,肝癌衍生生長因子在肝臟纖維化過程中可能扮演之病理性角色。研究結果發現,肝癌衍生生長因子在這兩種動物模式中的表現量均與纖維化過程呈時間依賴性變化,並且在纖維化肝臟組織主要表現於血管周邊的肝實質細胞中。此外,其表現量亦與肝內乙型轉形生長因子(Transforming growth factor; TGF-β)與第一型前膠原蛋白(pro-collagen type I)的增加呈一致性。在誘發肝臟纖維化前若先行送入攜帶肝癌衍生生長因子基因之腺病毒載體,使其大量表現,則會促使TGF-β表現增加與pro-collagen type I分子過度沉積。在體外作用模式中,發現當肝細胞培養在具有膠原蛋白披覆之培養盤時,可觀察到肝癌衍生生長因子與TGF-β間正向地相互調節彼此之分子表現量。此結果顯示肝癌衍生生長因子與TGF-β間所產生之促纖維化訊息傳遞具膠原蛋白依存性(collagen- dependent)。其很可能在肝臟纖維化初期,即藉由此種惡性循環模式作用而加速肝臟的纖維化病變。再者,以肝癌衍生生長因子重組蛋白作用於培養肝細胞,可顯著地刺激培養肝臟星狀細胞中之BrdU uptake與α-smooth muscle actin、pro-collagen type I分子表現量增加,此意味著肝細胞生成之肝癌衍生生長因子可能藉由paracrine的作用模式,活化肝臟星狀細胞。本研究證實肝癌衍生生長因子在肝臟纖維化過程中扮演著促纖維化的角色,預期在未來利用阻斷肝癌衍生生長因子的作用路徑可發展為預防或治療慢性肝臟疾病之有效策略之一。
Liver fibrosis, a major medical problem with significant morbidity and
mortality, is considered as a wound-healing response to a variety of chronic
stimuli. It is characterized by an excessive deposition of extracellular
matrix (ECM) proteins, which disrupts the normal architecture of liver and
ultimately leads to pathophysiological damage to liver. Hepatoma-derived
growth factor (HDGF), a growth factor originally purified from hepatoma
cells, is highly expressed in fetal hepatocytes and hepatoma. It is known to
play multifunctional roles in mitogenesis, organogenesis, embryogenesis,
and tumorigenesis. Its expression correlates with the proliferating state of
hepatocellular carcinoma (HCC) and serves as a prognostic factor. Since
liver fibrosis frequently occurs prior to HCC development, the specific aim
of this study is to investigate the role of HDGF in the progression of liver
fibrosis by using animal models of mice receiving either bile duct ligation
surgery or carbon tetrachloride administration. Quantitative real-time PCR
and Western blotting analysis showed a significant elevation of HDGF
expression in both models. HDGF levels correlated with progression of
liver fibrosis in a time-dependent manner as well as paralleled with the
expression of other two fibrotic markers, transforming growth factor-b1
(TGF-b1) and pro-collagen type I, in fibrotic livers. Intriguingly, the
over-expressed HDGF protein was localized mainly in perivenous
hepatocytes of fibrotic livers. Besides, adenovirus-mediated HDGF gene
delivery potentiated the production of TGF-b1 and pro-collagen type I,
thereby enhancing the intrahepatic collagen matrix deposits as evidenced
by Sirius red stain and morphometrical analysis. In cultured hepatocytes,
TGF-b1 and HDGF mutually up-regulated their de novo synthesis only
when grown on collagen-coated matrix, strongly suggesting that the
TGF-b1- and/or HDGF-driven pro-fibrogenic signaling is
collagen-dependent and a vicious circle may exist at the initial stage of
hepatic fibrogenesis. Moreover, administration with recombinant HDGF
stimulated BrdU uptake and synthesis of both a-smooth muscle actin and
pro-collagen type I in cultured hepatic stellate cells, implicating that a
mode of paracrinal action lies between these two cell types. In conclusion,
HDGF plays a pro-fibrogenic role during liver fibrosis and blockade of
HDGF pathway may potentially constitute the preventive or therapeutic
strategies for chronic liver diseases.
Abbreviations ……………………… 2
Abstract in Chinese ……………………… 4
Abstract in English ……………………… 6
Introduction …………………………… 8
Materials and Methods ……………………… 25
Results ……………………………… 43
Discussion ………………………… 55
Future Perspective …………………………… 63
References ……………………………… 65
Tables ……………………………… 80
Figures ……………………………… 86
Appendixes (Author''s CV and publications) … 117
Abboud E.R., Coffelt S.B., Figueroa Y.G., Zwezdaryk K.J., Nelson A.B., Sullivan D.E., Morris C.B., Tang Y., Beckman B.S., Scandurro A.B. (2007). Integrin-linked kinase: a hypoxia-induced anti-apoptotic factor exploited by cancer cells. Int J Oncol, 30:113-122.
Ala-Kokko L., Gunzler V., Hoek J.B., Rubin E., Prockop D.J. (1992). Hepatic fbrosis in rats produced by carbon tetrachloride and dimethylnitrosamine: Observations suggesting immunoassays of serum for the 7S fragment of type IV collagen are a more sensitive index of liver damage than immunoassays for the NH2-terminal propeptide of type III procollagen. Hepatology, 16:167-172.
Albanis E., Friedman S.L. (2006). Antifibrotic agents for liver disease. Am J Transplant, 6:12-19.
Aleffi S., Petrai I., Bertolani C., Parola M., Colombatto S., Novo E., Vizzutti F., Anania F.A., Milani S., Rombouts K., Laffi G., Pinzani M., Marra F. (2005). Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology, 42:1339-1348.
Arthur M.J., Iredale J.P. (1994). Hepatic lipocytes, TIMP-1 and liver fibrosis. J R Coll Physicians Lond, 28:200-208.
Asselah T., Bieche I., Laurendeau I., Paradis V., Vidaud D., Degott C., Martinot M., Bedossa P., Valla D., Vidaud M., Marcellin P. (2005). Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology, 129:2064-2075.
Bataller R., Brenner D.A. (2005). Liver fibrosis. J Clin Invest, 115:209-218.
Benvegnu L., Alberti A. (2001). Patterns of hepatocellular carcinoma development in hepatitis B virus and hepatitis C virus related cirrhosis. Antiviral Res, 52:199-207.
Bissell D.M. (1998). Hepatic fibrosis as wound repair: a progress report. J Gastroenterol, 33:295-302.
Bonniaud P., Margetts P.J., Ask K., Flanders K., Gauldie J., Kolb M. (2005). TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol, 175:5390-5395.
Border W.A., Noble N.A. (1994). Transforming growth factor-beta in tissue fibrosis. N Engl J Med, 331:1286-1292.
Borkham-Kamphorst E., Herrmann J., Stoll D., Treptau J., Gressner A.M., Weiskirchen R. (2004a). Dominant-negative soluble PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest, 84:766-777.
Borkham-Kamphorst E., Stoll D., Gressner A.M., Weiskirchen R. (2004b). Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis. Biochem Biophys Res Commun, 321:413-423.
Breitkopf K., Haas S., Wiercinska E., Singer M.V., Dooley S. (2005). Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res, 29:121S-131S.
Brown K.E., Broadhurst K.A., Mathahs M.M., Brunt E.M., Schmidt W.N. (2005). Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver. Lab Invest, 85:789-797.
Bursch W., Oberhammer F., Jirtle R.L., Askari M., Sedivy R., Grasl-Kraupp B., Purchio A.F., Schulte-Hermann R. (1993). Transforming growth factor-beta 1 as a signal for induction of cell death by apoptosis. Br J Cancer, 67:531-536.
Bustin M., Lehn D.A., Landsman D. (1990). Structural features of the HMG chromosomal proteins and their genes. Biochem Biophys Acta, 1049:231-243.
Cain K., Freathy C. (2001). Liver toxicity and apoptosis: role of TGF-beta1, cytochrome c and the apoptosome. Toxicol Lett, 120:307-315.
Canbay A., Friedman S., Gores G.J. (2004). Apoptosis: the nexus of liver injury and fibrosis. Hepatology, 39:273-278.
Casini A., Ceni E., Salzano R., Biondi P., Parola M., Galli A., Foschi M., Caligiuri A., Pinzani M., Surrenti C. (1997). Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology, 25:361-367.
Chan P.C., Chen S.Y., Chen C.H., Chen H.C. (2006). Crosstalk between hepatocyte growth factor and integrin signaling pathways. J Biomed Sci, 13:215-223.
Chedid A., Arain S., Snyder A., Mathurin P., Capron F., Naveau S. (2004). The immunology of fibrogenesis in alcoholic liver disease. Arch Pathol Lab Med, 128:1230-1238.
Chitturi S., George J. (2000). Predictors of liver-related complications in patients with chronic hepatitis C. Ann Med, 32:588-591.
Clemmons D.R., Maile L.A. (2005). Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol Endocrinol, 19:1-11.
Corpechot C., Barbu V., Wendum D., Kinnman N., Rey C., Poupon R., Housset C., Rosmorduc O. (2002). Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology, 35:1010-1021.
De Bleser P.J., Niki T., Rogiers V., Geerts A. (1997). Transforming growth factor-beta gene expression in normal and fibrotic rat liver. J Hepatol, 26:886-893.
Einck L., Bustin M. (1985). The intracellular distribution and function of the high mobility group chromosomal proteins. Exp Cell Res, 156:295-310.
Eng F.J., Friedman S.L. (2000). Fibrogenesis: I. New insights into hepatic stellate cell activation. The simple becomes complex. Am J Physiol Gastrointest Liver Physiol, 279:G7-11.
Enomoto H., Yoshida K., Kishima Y., Kinoshita T., Yamamoto M., Everett A.D., Miyajima A., Nakamura H. (2002a). Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology, 36:1519-1527.
Enomoto H., Yoshida K., Kishima Y., Okuda Y., Nakamura H. (2002b). Participation of hepatoma-derived growth factor in the regulation of fetal hepatocyte proliferation. J Gastroenterol, 37 Suppl 14:158-161.
Everett A.D. (2001). Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Dev Dyn, 222:450-458.
Everett A.D., Bushweller J. (2003). Hepatoma derived growth factor is a nuclear targeted mitogen. Curr Drug Targets, 4:367-371.
Everett A.D., Lobe D.R., Matsumura M.E., Nakamura H., Mcnamara C.A. (2000). Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest, 105:567-575.
Everett A.D., Narron J.V., Stoops T., Nakamura H., Tucker A. (2004). Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. Am J Physiol Lung Cell Mol Physiol, 286:L1194-1201.
Everett A.D., Stoops T., Mcnamara C.A. (2001). Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem, 276:37564-37568.
Friedman S.L. (1993). The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. New Engl J Med, 328:1828-1835.
Friedman S.L. (1997). Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol, 32:424-430.
Friedman S.L. (2004). Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol, 1:98-105.
Gabele E., Reif S., Tsukada S., Bataller R., Yata Y., Morris T., Schrum L.W., Brenner D.A., Rippe R.A. (2005). The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem, 280:13374-13382.
Garcia-Monzon C., Moreno-Otero R., Garcia-Buey L., Garcia-Sanchez A., Campanero M.R., Sanchez-Madrid F. (1992). Intrahepatic up-regulated expression of extracellular matrix protein receptors in chronic active hepatitis type B. Gastroenterology, 102:255-262.
Garcia-Trevijano E.R., Iraburu M.J., Fontana L., Dominguez-Rosales J.A., Auster A., Covarrubias-Pinedo A., Rojkind M. (1999). Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology, 29:960-970.
Giannelli G., Quaranta V., Antonaci S. (2003). Tissue remodelling in liver diseases. Histol Histopathol, 18:1267-1274.
Graham F.L., Prevec L. (1995). Methods for construction of adenovirus vectors. Mol Biotechnol, 3:207-220.
Gressner A.M. (1996). Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int Suppl, 54:S39-45.
Gressner A.M., Weiskirchen R. (2006). Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med, 10:76-99.
Greupink R., Bakker H.I., Bouma W., Reker-Smit C., Meijer D.K., Beljaars L., Poelstra K. (2006). The antiproliferative drug doxorubicin inhibits liver fibrosis in bile duct-ligated rats and can be selectively delivered to hepatic stellate cells in vivo. J Pharmacol Exp Ther, 317:514-521.
Gupta T.K., Toruner M., Chung M.K., Groszmann R.J. (1998). Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology, 28:926-931.
Herrera B., Murillo M.M., Alvarez-Barrientos A., Beltran J., Fernandez M., Fabregat I. (2004). Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Free Radic Biol Med, 36:16-26.
Hu T.H., Huang C.C., Liu L.F., Lin P.R., Liu S.Y., Chang H.W., Changchien C.S., Lee C.M., Chuang J.H., Tai M.H. (2003). Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer, 98:1444-1456.
Huang C.C., Chuang J.H., Chou M.H., Wu C.L., Chen C.M., Wang C.C., Chen Y.S., Chen C.L., Tai M.H. (2005). Matrilysin (MMP-7) is a major matrix metalloproteinase upregulated in biliary atresia-associated liver fibrosis. Mod Pathol, 18:941-950.
Ikeda K., Saitoh S., Suzuki Y., Kobayashi M., Tsubota A., Koida I., Arase Y., Fukuda M., Chayama K., Murashima N., Kumada H. (1998). Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. J Hepatol, 28:930-938.
Imperial J.C. (1999). Natural history of chronic hepatitis B and C. J Gastroenterol Hepatol, 14 Suppl:S1-5.
Iwasaki T., Nakagawa K., Nakamura H., Takada Y., Matsui K., Kawahara K. (2005). Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncol Rep, 13:1075-1080.
Izumoto Y., Kuroda T., Harada H., Kishimoto T., Nakamura H. (1997). Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun, 238:26-32.
Kishima Y., Yoshida K., Enomoto H., Yamamoto M., Kuroda T., Okuda Y., Uyama H., Nakamura H. (2002). Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepatogastroenterology, 49:1639-1644.
Kitamura K., Nakamoto Y., Akiyama M., Fujii C., Kondo T., Kobayashi K., Kaneko S., Mukaida N. (2002). Pathogenic roles of tumor necrosis factor receptor p55-mediated signals in dimethylnitrosamine-induced murine liver fibrosis. Lab Invest, 82:571-583.
Komura E., Tonetti C., Penard-Lacronique V., Chagraoui H., Lacout C., Lecouédic J.P., Rameau P., Debili N., Vainchenker W., Giraudier S. (2005). Role for the nuclear factor kappaB pathway in transforming growth factor-beta1 production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression. Cancer Res, 65:3281-3289.
Kornek M., Raskopf E., Guetgemann I., Ocker M., Gerceker S., Gonzalez-Carmona M.A., Rabe C., Sauerbruch T., Schmitz V. (2006). Combination of systemic thioacetamide (TAA) injections and ethanol feeding accelerates hepatic fibrosis in C3H/He mice and is associated with intrahepatic up regulation of MMP-2, VEGF and ICAM-1. J Hepatol, 45:370-376.
Kuehl L., Rechsteiner M., Wu L. (1985). Relationship between the structure of chromosomal protein HMG1 and its accumulation in the cell nucleus. J Biol Chem, 260:10361-10368.
Larsen M., Artym V.V., Green J.A., Yamada K.M. (2006). The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol, 18:463-471.
Lawrence T., Gilroy D.W., Colville-Nash P.R., Willoughby D.A. (2001). Possible new role for NF-kappaB in the resolution of inflammation. Nat Med, 7:1291-1297.
Leask A., Abraham D.J. (2004). TGF-beta signaling and the fibrotic response. FASEB J, 18:816-827.
Lee Y.I., Kwon Y.J., Joo C.K. (2004). Integrin-linked kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun, 316:997-1001.
Leroy V., Monier F., Bottari S., Trocme C., Sturm N., Hilleret M.N., Morel F., Zarski J.P. (2004). Circulating matrix metalloproteinases 1, 2, 9 and their inhibitors TIMP-1 and TIMP-2 as serum markers of liver fibrosis in patients with chronic hepatitis C: comparison with PIIINP and hyaluronic acid. Am J Gastroenterol, 99:271-279.
Li Y., Yang J., Dai C., Wu C., Liu Y. (2003). Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest, 112:503-516.
Liu X., Hu H., Yin J.Q. (2006). Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int, 26:8-22.
Luedde T., Trautwein C. (2008). A molecular link between inflammation and fibrogenesis: the bacterial microflora influences hepatic fibrosis via toll-like receptor 4-dependent modification of transforming growth factor-beta signaling in hepatic stellate cells. Hepatology, 47:1089-1091.
Luo B.H., Springer T.A. (2006). Integrin structures and conformational signaling. Curr Opin Cell Biol, 18:579-586.
Maher J.J. (2001). Interactions between hepatic stellate cells and the immune system. Semin Liver Dis, 21:417-426.
Mak K.M., Leo M.A., Lieber C.S. (1984). Alcoholic liver injury in baboon:transformation of lipocytes to transitional cells. Gastroenterology, 87:188-200.
Mak K.M., Lieber C.S. (1988). Lipocytes and transitional cells in alcoholicliver disease: a morphometric study. Hepatology, 8:1027-1033.
Mann D.A., Smart D.E. (2002). Transcriptional regulation of hepatic stellate cell activation. Gut, 50:891-896.
Marra F., Efsen E., Romanelli R.G., Caligiuri A., Pastacaldi S., Batignani G., Bonacchi A., Caporale R., Laffi G., Pinzani M., Gentilini P. (2000). Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology, 119:466-478.
Massague J., Chen Y.G. (2000). Controlling TGF-beta signaling. Genes Dev, 14:627-644.
Masuda H., Fukumoto M., Hirayoshi K., Nagata K. (1994). Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis. J Clin Invest, 94:2481-2488.
Matsuyama A., Inoue H., Shibuta K., Tanaka Y., Barnard G.F., Sugimachi K., Mori M. (2001). Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res, 61:5714-5717.
Miyahara T., Schrum L., Rippe R., Xiong S., Yee H.F., Jr., Motomura K., Anania F.A., Willson T.M., Tsukamoto H. (2000). Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem, 275:35715-35722.
Moissoglu K., Schwartz M.A. (2006). Integrin signalling in directed cell migration. Biol Cell, 98:547-555.
Mori M., Morishita H., Nakamura H., Matsuoka H., Yoshida K., Kishima Y., Zhou Z., Kida H., Funakoshi T., Goya S., Yoshida M., Kumagai T., Tachibana I., Yamamoto Y., Kawase I., Hayashi S. (2004). Hepatoma-derived growth factor is involved in lung remodeling by stimulating epithelial growth. Am J Respir Cell Mol Biol, 30:459-469.
Mosevitsky M.I., Novitskaya V.A., Iogannsen M.G., Zabezhinsky M.A. (1989). Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions. Eur J Biochem, 185:303-310.
Nakamura H., Izumoto Y., Kambe H., Kuroda T., Mori T., Kawamura K., Yamamoto H., Kishimoto T. (1994). Molecular cloning of compementary DNA for a novel human hepatoma-derived growth factor. J Biol Chem, 269:25143-25149.
Nakamura H., Kambe H., Egawa T., Kimura Y., Ito H., Hayashi E., Yamamoto H., Sato J., Kishimoto S. (1989). Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta, 183:273-284.
Nie Q.H., Zhang Y.F., Xie Y.M., Luo X.D., Shao B., Li J., Zhou Y.X. (2006). Correlation between TIMP-1 expression and liver fibrosis in two rat liver fibrosis models. World J Gastroenterol, 12:3044-3049.
Novo E., Cannito S., Zamara E., Valfre Di Bonzo L., Caligiuri A., Cravanzola C., Compagnone A., Colombatto S., Marra F., Pinzani M., Parola M. (2007). Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol, 170:1942-1953.
Okuda Y., Nakamura H., Yoshida K., Enomoto H., Uyama H., Hirotani T., Funamoto M., Ito H., Everett A.D., Hada T., Kawase I. (2003). Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor. Cancer Sci, 94:1034-1041.
Oliver J.A., Al-Awqati Q. (1998). An endothelial growth factor involved in rat renal development. J Clin Invest, 102:1208-1219.
Ortega-Velazquez R., Gonzalez-Rubio M., Ruiz-Torres M.P., Diez-Marques M.L., Iglesias M.C., Rodriguez-Puyol M., Rodriguez-Puyol D. (2004). Collagen I upregulates extracellular matrix gene expression and secretion of TGF-beta1 by cultured human mesangial cells. Am J Physiol Cell Physiol, 286:C1335-C1343.
Pinkse G.G., Voorhoeve M.P., Noteborn M., Terpstra O.T., Bruijn J.A., De Heer E. (2004). Hepatocyte survival depends on beta1-integrin-mediated attachment of hepatocytes to hepatic extracellular matrix. Liver Int, 24:218-226.
Pinzani M., Gesualdo L., Sabbah G.M., Abboud H.E. (1989). Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest, 84:1786-1793.
Prosser C.C., Yen R.D., Wu J. (2006). Molecular therapy for hepatic injury and fibrosis: where are we? World J Gastroenterol, 12:509-515.
Quondamatteo F., Kempkensteffen C., Miosge N., Sonnenberg A., Herken R. (2004). Ultrastructural localization of integrin subunits alpha3 and alpha6 in capillarized sinusoids of the human cirrhotic liver. Histol Histopathol, 19:799-806.
Racine-Samson L., Rockey D.C., Bissell D.M. (1997). A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem, 272:30911-30917.
Rameshwar P., Narayanan R., Qian J., Denny T.N., Colon C., Gascon P. (2000). NF-kappa B as a central mediator in the induction of TGF-beta in monocytes from patients with idiopathic myelofibrosis: an inflammatory response beyond the realm of homeostasis. J Immunol, 165:2271-2277.
Ramm G.A., Nair V.G., Bridle K.R., Shepherd R.W., Crawford D.H. (1998). Contribution of hepatic parenchymal and nonparenchymal cells to hepatic fibrogenesis in biliary atresia. Am J Pathol, 153:527-535.
Ren H., Tang X., Lee J.J., Feng L., Everett A.D., Hong W.K., Khuri F.R., Mao L. (2004). Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol, 22:3230-3237.
Rockey D.C. (2001). Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis, 21:337-349.
Rockey D.C., Chung J.J. (1995). Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest, 95:1199-1206.
Rockey D.C., Fouassier L., Chung J.J., Carayon A., Vallee P., Rey C., Housset C. (1998). Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology, 27:472-480.
Rosmorduc O., Wendum D., Corpechot C., Galy B., Sebbagh N., Raleigh J., Housset C., Poupon R. (1999). Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol, 155:1065-1073.
Scoazec J.Y. (1995). Expression of cell-matrix adhesion molecules in the liver and their modulation during fibrosis. J Hepatol, 22:20-27.
Siegmund S.V., Brenner D.A. (2005). Molecular pathogenesis of alcohol-induced hepatic fibrosis. Alcohol Clin Exp Res, 29:102S-109S.
Siegmund S.V., Dooley S., Brenner D.A. (2005). Molecular mechanisms of alcohol-induced hepatic fibrosis. Dig Dis, 23:264-274.
Sung C.K., She H., Xiong S., Tsukamoto H. (2004). Tumor necrosis factor-alpha inhibits peroxisome proliferator-activated receptor gamma activity at a posttranslational level in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 286:G722-729.
Tai M.H., Cheng H., Wu J.P., Liu Y.L., Lin P.R., Kuo J.S., Tseng C.J., Tzeng S.F. (2003a). Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion. Exp Neurol, 183:508-515.
Tai Y.T., Podar K., Catley L., Tseng Y.H., Akiyama M., Shringarpure R., Burger R., Hideshima T., Chauhan D., Mitsiades N., Richardson P., Munshi N.C., Kahn C.R., Mitsiades C., Anderson K.C. (2003b). Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3''-kinase/AKT signaling. Cancer Res, 63:5850-5858.
Thanos D., Maniatis T. (1992). The high mobility group protein HMG I (Y) is required for NF-kB dependent virus induction of the human IFN-b gene. Cell (Cambridge, Mass.), 71:777-789.
Torres L., Garcia-Trevijano E.R., Rodriguez J.A., Carretero M.V., Bustos M., Fernandez E., Eguinoa E., Mato J.M., Avila M.A. (1999). Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis. Biochim Biophys Acta, 1455:12-22.
Tsukada S., Parsons C.J., Rippe R.A. (2006). Mechanisms of liver fibrosis. Clin Chim Acta, 364:33-60.
Tsukamoto H., Matsuoka M., French S.W. (1990). Experimental models of hepatic fibrosis: a review. Semin Liver Dis, 10:56-65.
Uyama H., Tomita Y., Nakamura H., Nakamori S., Zhang B., Hoshida Y., Enomoto H., Okuda Y., Sakon M., Aozasa K., Kawase I., Hayashi N., Monden M. (2006). Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res, 12:6043-6048.
Von Sengbusch A., Gassmann P., Fisch K.M., Enns A., Nicolson G.L., Haier J. (2005). Focal adhesion kinase regulates metastatic adhesion of carcinoma cells within liver sinusoids. Am J Pathol, 166:585-596.
Wasser S., Tan C.E. (1999). Experimental models of hepatic fibrosis in the rat. Ann Acad Med Singapore, 28:109-111.
Wong V.S., Hughes V., Trull A., Wight D.G., Petrik J., Alexander G.J. (1998). Serum hyaluronic acid is a useful marker of liver fibrosis in chronic hepatitis C virus infection. J Viral Hepat, 5:187-192.
Xu Z., Ma D.Z., Wang L.Y., Su J.M., Zha X.L. (2003). Transforming growth factor-beta1 stimulated protein kinase B serine-473 and focal adhesion kinase tyrosine phosphorylation dependent on cell adhesion in human hepatocellular carcinoma SMMC-7721 cells. Biochem Biophys Res Commun, 312:388-396.
Yamamoto S., Tomita Y., Hoshida Y., Takiguchi S., Fujiwara Y., Yasuda T., Doki Y., Yoshida K., Aozasa K., Nakamura H., Monden M. (2006). Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res, 12:117-122.
Yang C., Zeisberg M., Mosterman B., Sudhakar A., Yerramalla U., Holthaus K., Xu L., Eng F., Afdhal N., Kalluri R. (2003). Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology, 124:147-159.
Yoshida K., Nakamura H., Okuda Y., Enomoto H., Kishima Y., Uyama H., Ito H., Hirasawa T., Inagaki S., Kawase I. (2003). Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol, 18:1293-1301.
Yoshida K., Tomita Y., Okuda Y., Yamamoto S., Enomoto H., Uyama H., Ito H., Hoshida Y., Aozasa K., Nagano H., Sakon M., Kawase I., Monden M., Nakamura H. (2006). Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol, 13:159-167.
Yoshiji H., Kuriyama S., Yoshii J., Ikenaka Y., Noguchi R., Hicklin D.J., Wu Y., Yanase K., Namisaki T., Yamazaki M., Tsujinoue H., Imazu H., Masaki T., Fukui H. (2003). Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut, 52:1347-1354.
Zhang J., Ren H., Yuan P., Lang W., Zhang L., Mao L. (2006a). Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res, 66:18-23.
Zhang Y., Ikegami T., Honda A., Miyazaki T., Bouscarel B., Rojkind M., Hyodo I., Matsuzaki Y. (2006b). Involvement of integrin-linked kinase in carbon tetrachloride-induced hepatic fibrosis in rats. Hepatology, 44:612-622.
Zhou Z., Yamamoto Y., Sugai F., Yoshida K., Kishima Y., Sumi H., Nakamura H., Sakoda S. (2004). Hepatoma-derived growth factor is a neurotrophic factor harbored in the nucleus. J Biol Chem, 279:27320-27326.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top