(3.210.184.142) 您好!臺灣時間:2021/05/13 18:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王尚穎
研究生(外文):Shang-ying Wang
論文名稱:第一型Interleukin-1receptor所誘導的發炎反應可對抗由綠膿桿菌所引起的肺炎
論文名稱(外文):Type-1 Interleukin-1 Receptor is Essential for Host Defense Against Pseudomonas aeruginosa-induced Pneumonia
指導教授:陳理維陳理維引用關係許清玫
指導教授(外文):Li-wei ChenChing-mei Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:49
中文關鍵詞:第一型Interleukin-1 receptor綠膿桿菌肺炎
外文關鍵詞:pseudomonas aeruginosapneumoniaType-1 Interleukin-1 receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Interleukin-1(IL-1)為一種自發性免疫反應中產生的促發炎因子,IL-1會與其特有的受體結合並誘導一連串的發炎反應。本研究探討此第一型IL-1受體(type-1 IL-1R)在小鼠由綠膿桿菌引發肺炎時所扮演的角色,將綠膿桿菌注入正常(WT)和第一型IL-1受體缺失(IL1R-/-)小鼠的氣管後,於8小時至24小時觀察其肺部微血管滲漏、MPO活性、NF-κB的表現、iNOS、IL-1β以及其他前促炎因子的表現。結果顯示在注入菌8小時後,WT小鼠所誘發的發炎反應皆比IL1R1-/-小鼠高,但IL1R1-/-小鼠在24小時後的存活率卻比WT小鼠低。當研究IL1R1-/-小鼠高死亡率的原因時,發現IL1R1-/-小鼠肺部及血中的含菌量均較WT小鼠有明顯的增加,而由PMN吞噬活性的實驗顯示WT與IL1R1-/-小鼠的PMN的噬菌活性沒有差異。進一步利用基因嵌合小鼠證實引發IL1R1-/-小鼠肺炎的細菌轉移至血液並無法由PMN清除。同樣的,在24小時時,IL1R1-/-小鼠肺部微血管的滲漏情形也較WT嚴重,當在小鼠引發肺炎後8小時給予iNOS抑制劑SMT時,可減少IL1R1-/-小鼠在引發肺炎後24小時的肺部通透性、死亡率、肺部和血中的含菌量,證實IL1R1-/-小鼠的肺部iNOS表現並造成肺部通透性上升係造成高死亡率的主因,同時顯示此實驗模式下所引發的菌血症及死亡可藉由調控iNOS的活性而改善。
IL-1 is an essential pro-inflammatory factor in inflammation response. The effect of IL-1 is through binding to the IL-1 receptor that triggers the following signal transduction pathway. To study the role of IL-1 receptor-mediated signal pathway in inflammatory response, injecting P. aeruginosa into trachea of wild-type (WT) and type-1 IL-1 receptor knock-out (IL-1R1-/-) mice was used as the experimental model. Injecting bacterium into trachea of mice will induce pneumonia which increases accumulation of neutrophils, production of nitric oxide, expression of intercellular adhesion molecule-1 as well as many kinds of cytokines and causes the lung damage. The pneumonia-induced lung damage and inflammation at 24 hr after injecting P. aeruginosa into trachea were more severe in knock-out than in WT mice, as demonstrated by increases in extravasations of Evans blue dye (EBD), myeloperoxidase (MPO) activity, expression of iNOS, IL-1 beta and ICAM-1, and higher mortality of knock-out mice. The cause of the high mortality in knock-out mice was further investigated by culturing the lung and blood samples for bacterial counts. The bacterial counts of lung and blood of IL-1R1-/- mice were all higher than that of WT mice in 8 to 24 hr after injection of bacterium. Finally, chimeric mice (WT → WT, IL1R1-/- →IL1R1-/-, WT → IL1R1-/-, IL1R1-/- → WT) were generated and used to determine the role of PMN cells of blood. Suggesting that increased amounts of bacteria in lung and blood is related to the higher mortality in knock-out mice and the type-1 IL-1 receptor is essential for mice to against pneumonia in this model.
Abstract in Chinese .......................................................................... 3
Abstract in English ........................................................................... 4
Introduction ...................................................................................... 5
Materials and Methods ..................................................................... 12
Results .............................................................................................. 20
Discussion ......................................................................................... 25
Figures .............................................................................................. 31
References ........................................................................................ 42
1. Schultz MJ, Rijneveld W, Floruin S, Edwards CK, Dinarello CA, Van der Pol T. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol. 2002; 282:L285–L290.
2. Skerrett SJ, Wilson CB, Liggitt HD, Hajjar AM. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2007; 292:312-322.
3. Mizgerd JP. Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Semin Immunol. 2002; 14:123-32.
4. Mortelliti MP, Manning HL. Acute respiratory distress syndrome. Am Fam Physician. 2002; 65:1823-30.
5. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005; 353:1685-93.
6. Wang Z, Chen F, Zhai R, Zhang L, Su L, Lin X, Thompson T, Christiani DC. Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS ONE. 2009; 4:e4380.
7. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder -Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V, Ryffel B, Couillin I. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007; 117:3786-99.
8. Chen Q, Sen G, Snapper CM. Endogenous IL-1R1 signaling is critical for cognate CD4+ T cell help for induction of in vivo type 1 and type 2 antipolysaccharide and antiprotein Ig isotype responses to intact Streptococcus pneumoniae, but not to a soluble pneumococcal conjugate vaccine. J Immunol. 2006; 177:6044-51.
9. Fasano MB, Cousart S, Neal S, McCall CE. Increased expression of the interleukin 1 receptor on blood neutrophils of humans with the sepsis syndrome. J Clin Invest. 1991; 88:1452-9.
10. Chen LW, Chang WJ, Wang JS, Hsu C. Interleukin-1 mediates thermal injury-induced lung damage through C-Jun NH2-terminal kinase signaling. Crit Care Med. 2007;35:1113-22.
11. Dias-Junior CA, Cau SB, Tanus-Santos JE. Role of nitric oxide in the control of the pulmonary circulation: physiological, pathophysiological, and therapeutic implications. J Bras Pneumol. 2008; 34:412-9.
12. Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol. 2006; 147:S193-S201.
13. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004; 84:731-65.
14. Haworth SG. Role of the endothelium in pulmonary arterial hypertension. Vascul Pharmacol. 2006; 45:317-25.
15. Förstermann U, Boissel JP, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J. 1998; 12:773-90.
16. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999; 43:521-31.
17. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995; 333:214-21.
18. Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, et al. Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med. 2001; 164:1038-42.
19. Nicod LP. The endothelium and genetics in pulmonary arterial hypertension. Swiss Med Wkly. 2007; 137:437-42.
20. Sittipunt C, Steinberg KP, Ruzinski JT, Myles C, Zhu S, Goodman RB, et al. Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001; 163:503-10.
21. Su CF, Yang FL, Chen HI. Inhibition of inducible nitric oxide synthase attenuates acute endotoxin-induced lung injury in rats. Clin Exp Pharmacol Physiol. 2007; 34:339-46.
22. Liu X, Bee D, Barer GR. Role of nitric oxide synthase and cyclooxygenase in pulmonary vascular control in isolated perfused lungs of ferrets, rats and rabbits. Exp Physiol. 1999; 84:907-16.
23. Hart CM. Nitric oxide in adult lung disease. Chest. 1999; 115:1407-17.
24. Mortelliti MP, Manning HL. Acute respiratory distress syndrome. Am Fam Physician. 2002; 65:1823-30.
25. Oishi P, Grobe A, Benavidez E, Ovadia B, Harmon C, Ross GA, et al. Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb. Am J Physiol Lung Cell Mol Physiol. 2006; 290:L359-66.
26. Kuryłowicz A, Nauman J. The role of nuclear factor-kappaB in the development of autoimmune diseases: a link between genes and environment. Acta Biochim Pol. 2008; 55:629-47.
27. Srivastava SK, Ramana KV. Focus on molecules: nuclear factor-kappaB. Exp Eye Res. 2009; 88:2-3.
28. Chen FE, Huang DB, Chen YQ, Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature.1998; 391:410–413.
29. Chen LW, Chang WJ, Wang JS, et al: Thermal injury-induced peroxynitrite production and pulmonary inducible nitric oxide synthase expression depend on JNK/AP-1 signaling. Crit Care Med. 2006; 34:142–150.
30. Magnotti LJ, Upperman JS, Xu DZ, et al: Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock. Ann Surg 1998; 228:518–527.
31. Patterson CE, Rhoades RA, Garcia JG: Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung. J Appl Physiol. 1992; 72:865–873.
32. Matute-Bello G, Lee JS, Frevert CW, et al: Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. J Immunol Methods. 2004; 292:25–34.
33. Chen LW, Chang WJ, Wang JS, Hsu CM. Interleukin-1 mediates thermal injury-induced lung damage through C-Jun NH2-terminal kinase signaling. Crit Care Med. 2007; 35:1113-22.
34. Fang FC. Host/pathogen interactions: mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 1997; 99:2818–2825.
35. Szabo A, Hake P, Salzman AL, et al: Beneficial effects of mercaptoethylguanidine, an inhibitor of the inducible isoform of nitric oxide synthase and a scavenger of peroxynitrite, in a porcine model of delayed hemorrhagic shock. Crit Care Med 1999; 27:1343–1350
36. Power MR, Li B, Yamamoto M, Akira S, Lin TJ. A role of Toll-IL-1 receptor domain-containing adaptor-inducing IFN-beta in the host response to Pseudomonas aeruginosa lung infection in mice. J Immunol. 2007; 178:3170-6.
37. Koh Y, Hybertson BM, Jepson EK, Cho OJ, and Repine JE. Cytokine-induced neutrophil chemoattractant is necessary for interleukin-1-induced lung leak in rats. J Appl Physiol. 1995; 79: 472–478.
38. Leff JA, Baer JW, Bodman ME, Kirkman JM, Shanley PF, Patton LM, Beehler CJ, McCord JM, and Repine JE. Interleukin- 1-induced lung neutrophil accumulation and oxygen metabolite-mediated lung leak in rats. Am J Physiol Lung Cell Mol Physiol 1994; 266:L2–L8.
39. Ulich TR, Yin SM, Guo KZ, del Castillo J, Eisenberg SP, and Thompson RC. The intratracheal administration of endotoxin and cytokines. III. The interleukin-1 (IL-1) receptor antagonist inhibits endotoxin- and IL-1-induced acute inflammation. Am J Pathol. 1991; 138: 521–524.
40. Laichalk LL, Kunkel SL, Strieter RM, Danforth JM, Bailie MB, and Standiford TJ. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia. Infect Immun. 1996; 64: 5211–5218.
41. Van der Poll T, Keogh CV, Buurman WA, and Lowry SF. Passive immunization against tumor necrosis factor-α impairs host defense during pneumococcal pneumonia in mice. Am J Respir Crit Care Med. 1997; 155:603–608.
42. Smith JA. Neutrophils, host defense, and inflammation : a double-edged sword. J Leukoc Biol. 1994; 56: 672-686.
43. Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to Pseudomonas aeruginosa Chronic Lung Infection Requires Cystic Fibrosis Transmembrane Conductance Regulator-Modulated Interleukin-1 (IL-1) Release and Signaling through the IL-1 Receptor. Infect Immun. 2007; 75:1598-608.
44. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen- Host Interactions in Pseudomonas aeruginosa Pneumonia. Am J Respir Crit Care Med. 2005; 1209-1223.
45. Mizgerd JP, Spieker MR, Doerschuk CM. Early Response Cytokines and Innate Immunity: Essential Roles for TNF Receptor 1 and Type I IL-1 Receptor During Escherichia coli Pneumonia in Mice. J Immunol. 2001; 166:4042-8.
46. Kafka D, Ling E, Feldman G, Benharroch D, Voronov E, Givon -Lavi N, Iwakura Y, Dagan R, Apte RN, Mizrachi-Nebenzahl Y. Contribution of IL-1 to resistance to Streptococcus pneumoniae infection. Int Immunol. 2008; 20:1139-46.
47. Juffermans NP, Florquin S, Camoglio L, Verbon A, Kolk AH, Speelman P, van Deventer SJ, van Der Poll T. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J Infect Dis. 2000; 182:902-8.
48. Ganter MT, Roux J, Miyazawa B, Howard M, Frank JA, Su G, Sheppard D, Violette SM, Weinreb PH, Horan GS, Matthay MA, Pittet JF. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circ Res. 2008; 102:804-12.
49. Olman MA, White KE, Ware LB, Cross MT, Zhu S, Matthay MA. Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1. Chest. 2002; 121:69S-70S.
50. White KE, Ding Q, Moore BB, Peters-Golden M, Ware LB, Matthay MA, Olman MA. Prostaglandin E2 mediates IL-1beta-related fibroblast mitogenic effects in acute lung injury through differential utilization of prostanoid receptors. J Immunol. 2008; 180:637-46.
51. Meduri GU, Kanangat S, Stefan J, Tolley E, Schaberg D. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. Am J Respir Crit Care Med. 1999; 160:961-7.
52. Meduri GU. Clinical review: a paradigm shift: the bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome. Crit Care. 2002; 6:24-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔