跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉仁超
研究生(外文):Ren-Chao Liu
論文名稱:一個調控大鼠肝星狀細胞增生、移動與活化的新基因Rogdi
論文名稱(外文):A Novel Gene Rogdi Regulates Proliferation, Migration and Activation of Rat Hepatic Stellate Cells
指導教授:卓忠隆
指導教授(外文):Chung-Lung Cho
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:肝星狀細胞肝纖維化
外文關鍵詞:hepatic stellate cellsfibrotic liver
相關次數:
  • 被引用被引用:2
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Rogdi 是一個尚未知其功能的基因。依據 NCBI基因資料庫,大鼠此基因位於其染色體10q12上,遺傳編碼區864 bp,轉譯出287個胺基酸。本實驗室之前研究指出人類ROGDI會影響 HeLa、Hep 3B 與 NIH3T3細胞的增生速度。後來發現肝纖維化的組織中,Rogdi蛋白質有增加表現的現象。肝臟纖維化過程中,肝細胞受到損傷,造成發炎反應,刺激肝星狀細胞從靜默態轉型成活化態,表現出α-平滑肌肌動蛋白(α-SMA)、加速細胞增生與沈積大量膠原蛋白, 造成肝纖維化。本研究主要以分離培養的大鼠肝星狀細胞,首先發現活化態肝星狀細胞的Rogdi蛋白質表現量也較多。接著藉由轉染質體改變初代肝星狀細胞培養中 Rogdi基因表現,顯示Rogdi會影響細胞增生、也影響肝星狀細胞活化的標記蛋白α-SMA的表現,以及造成肝纖維化主要的蛋白質collagen type I的表現。並且也發現經過 PDGF刺激的肝星狀細胞,其Rogdi的表現量明顯增加。更深入研究顯示Rogdi參與MAPK與PI3K/Akt訊號傳遞路徑。最後我們發現 Rogdi基因表現會影響細胞移動的能力。
Rogdi was a novel gene with unknown function. According to GeneBank database, the gene is located on chromsome 10q12 and the length of coding regeion is 864 bp that encods 287 animo acids. Earlier studies in our laboratory showed that human ROGDI influenced rate of cell proliferaion in HeLa, Hep3B and NIH3T3 cells. In addition, we found Rogdi protien was up-regulated in fibrotic livers. Following various types of injury to liver, quiescent hepatic stellate cells (HSCs) transform to activated phenotype, leading to exprssion of α-SMA, increasing rate of cell proliferation and depositing of extracellular matrix. In this study, we found that Rogdi protein was up-regulated in activated HSCs isolated and cultured from rat livers. By either overexpression or RNA interference of Rogdi, we found that Rogdi affected rate of HSCs proliferation, and expressions of α-SMA and collagen type I. Expression of Rogdi protein was induced after PDGF treatment of rat HSCs. Additionally, we found that Rogdi was involved in MAPK and PI3K/Akt pathways. Furthermore, using wound healing assay and migration assay, Rogdi was found to regulate migration of activated HSCs.
中文摘要
英文摘要
頁次
前言 --------------------------------------------------------------------1
ROGDI -----------------------------------------------------------------------1
肝纖維化與肝星狀細胞 --------------------------------------------------1
肝纖維化模式的應用 -----------------------------------------------------2
肝星狀細胞的異質性與可塑性 -----------------------------------------5
研究星狀細胞的模式與方法 --------------------------------------------6
生長因子與細胞激素對肝星狀細胞的影響 --------------------------9
實驗目的 -------------------------------------------------------------11
材料與方法 ----------------------------------------------------------12
Total RNA的萃取 --------------------------------------------------------12
反轉錄反應 ----------------------------------------------------------------12
聚合酶連鎖反應 ----------------------------------------------------------13
建構表達蛋白質質體 ----------------------------------------------------13
轉型作用 -------------------------------------------------------------------14
製備小量質體 -------------------------------------------------------------15
表現與萃取大量蛋白質 -------------------------------------------------15
純化His-ROGDI融合蛋白 ---------------------------------------------16
ROGDI多株抗體製備及純化 ------------------------------------------16
西方墨點法 ----------------------------------------------------------------17
誘導動物肝纖維化 -------------------------------------------------------18
分離與培養肝星狀細胞 -------------------------------------------------18
細胞轉染 -------------------------------------------------------------------20
免疫細胞化學染色 -------------------------------------------------------20
免疫螢光染色 -------------------------------------------------------------20
即時聚合酵素連鎖反應 -------------------------------------------------23
細胞增生分析 -------------------------------------------------------------23
細胞移行能力分析 -------------------------------------------------------25
數據統計分析 -------------------------------------------------------------26
結果 -------------------------------------------------------------------28
大量表現His-ROGDI融合蛋白 --------------------------------------28
His-ROGDI融合蛋白的純化 ------------------------------------------29
多株抗體anti-ROGDI的純化 -----------------------------------------29
多株抗體anti-ROGDI的確認 -----------------------------------------29
動物肝纖維化模式檢測Rogdi的變化 -------------------------------30
確認大鼠肝星狀細胞與純度 -------------------------------------------31
Rogdi在大鼠肝星狀細胞的表現 --------------------------------------32
LPS處理對大鼠肝星狀細胞內Rogdi蛋白質的影響 -------------33
細胞激素處理對大鼠肝星狀細胞內Rogdi蛋白質的影響 -------34
Rogdi對大鼠肝星狀細胞增生的影響 --------------------------------34
Rogdi對大鼠肝星狀細胞其他基因mRNA表現的影響 ----------38
Rogdi對大鼠肝星狀細胞活化的影響與訊號傳遞路徑的參與 --39
Rogdi對大鼠肝星狀細胞Wound healing assay的影響 -----------42
Rogdi對大鼠肝星狀細胞侵入能力的影響 --------------------------43
討論 -------------------------------------------------------------------44
參考文獻 -------------------------------------------------------------47
圖 ----------------------------------------------------------------------55
表 ----------------------------------------------------------------------72
附錄 -------------------------------------------------------------------73
1. Gines P, Cardenas A, Arroyo V, Rodes J. Management of cirrhosis
and ascites. N Engl J Med 2004 Apr 15;350(16):1646-1654.
2. Iredale JP. Cirrhosis: new research provides a basis for rational and
targeted treatments. BMJ 2003 Jul 19;327(7407):143-147.
3. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005 Feb;115
(2):209-218.
4. Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the
principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985 Dec;82(24):8681-8685.
5. Geerts A. History, heterogeneity, developmental biology, and functions Ofquiescent hepatic stellate cells. Semin Liver Dis 2001 Aug; 21(3): 311-335.
6. Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJ.
Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 1996 Mar;110 (3):821-831.
7. Wanless IR, Nakashima E, Sherman M. Regression of human
cirrhosis. Morphologic features and the genesis of incomplete septal
cirrhosis. Arch Pathol Lab Med 2000 Nov;124(11):1599-1607.
8. Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in
rodents. Methods Mol Med 2005;117:237-250.
9. Tsukamoto H, Matsuoka M, French SW. Experimental models of
hepatic fibrosis: a review. Semin Liver Dis 1990 Feb;10(1):56-65.
10. Maher JJ, Bissell DM, Friedman SL, Roll FJ. Collagen measured in
primary cultures of normal rat hepatocytes derives from lipocytes within the monolayer. J Clin Invest 1988 Aug;82(2):450-459.
11. Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in
rodents. Methods Mol Med 2005;117:237-250.
12. Tsukamoto H, Matsuoka M, French SW. Experimental models of
hepatic fibrosis: a review. Semin Liver Dis 1990 Feb;10(1):56-65.
13. Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis
2001;21(1):89-104.
14. Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA,
Woodburne VE, et al. Rodent nutritional model of non-alcoholic
steatohepatitis:species, strain and sex difference studies. J
Gastroenterol Hepatol 2003 Nov;18(11):1272-1282.
15. Vig P, Russo FP, Edwards RJ, Tadrous PJ, Wright NA, Thomas HC,
et al. The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology 2006 Feb;43 (2):316-324.
16. Chisari FV, Pinkert CA, Milich DR, Filippi P, McLachlan A, Palmiter
RD, et al. A transgenic mouse model of the chronic hepatitis B
Surface antigen carrier state. Science 1985 ec ;230(4730):1157-1160.
17. Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in
rodents. Methods Mol Med 2005;117:237-250.
18. Okazaki I, Maruyama K. Collagenase activity in experimental hepatic
fibrosis. Nature 1974 Nov 1;252(5478):49-50.
19. Montfort I, Perez-Tamayo R. Collagenase in experimental carbon
tetrachloride cirrhosis of the liver. Am J Pathol 1978 Aug;9
(2) :411-420.
20. Arthur MJ, Mann DA, Iredale JP. Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J Gastroenterol Hepatol 1998 Sep;13 Suppl:S33-38.
21. Otto DA, Veech RL. Isolation of a lipocyte-rich fraction from rat liver
nonparenchymal cells. Adv Exp Med Biol 1980;132:509-517.
22. Maher JJ, McGuire RF. Extracellular matrix gene expression
increases preferentially in rat lipocytes and sinusoidal endothelial
cells during hepatic fibrosis in vivo. J Clin Invest 1990 Nov;86 (5):1641-1648.
23. Friedman SL, Rockey DC, McGuire RF, Maher JJ, Boyles JK, Yamasaki G. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology 1992 Feb;15(2):234-243.
24. Iredale JP, Benyon RC, Arthur MJ, Ferris WF, Alcolado R, Winwood PJ, et al. Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis. Hepatology 1996
Jul;24(1):176-184.
25. Rockey DC. Hepatic blood flow regulation by stellate cells in normal
and injured liver. Semin Liver Dis 2001 Aug;21(3):337-349.
26. Milani S, Herbst H, Schuppan D, Kim KY, Riecken EO, Stein H. Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis. Gastroenterology 1990 Jan;98(1):175-184.
27. Marra F. Hepatic stellate cells and the regulation of liver nflammation. J Hepatol 1999 Dec;31(6):1120-1130.
28. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Vascular endothelial growth factor and receptor interaction is a
prerequisite for murine hepatic fibrogenesis. Gut 2003 Sep;52 (9):1347-1354.
29. Schmitt-Graff A, Desmouliere A, Gabbiani G. Heterogeneity of
myofibroblast phenotypic features: an example of fibroblastic cell
plasticity. Virchows Arch 1994;425(1):3-24.
30. Ballardini G, Groff P, Badiali de Giorgi L, Schuppan D, Bianchi FB.
Ito cell heterogeneity: desmin-negative Ito cells in normal rat liver.
Hepatology 1994 Feb;19(2):440-446.
31. Ramm GA, Britton RS, O''Neill R, Blaner WS, Bacon BR. Vitamin
A-poor lipocytes: a novel desmin-negative lipocyte subpopulation,
which can be activated to myofibroblasts. Am J Physiol 1995 Oct; 269(4 Pt 1):G532-541.
32. Friedman SL, Yamasaki G, Wong L. Modulation of transforming growth factor beta receptors of rat lipocytes during the hepatic wound healing response. Enhanced binding and reduced gene expression accompany cellular activation in culture and in vivo. J Biol Chem 1994 Apr 8;269(14):10551-10558.
33. Skalli O, Schurch W, Seemayer T, Lagace R, Montandon D, Pittet B, et al. Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest 1989 Feb;60(2):275-285.
34. Schmitt-Graff A, Kruger S, Bochard F, Gabbiani G, Denk H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 1991 May;138(5):1233-1242.
35. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and
phenotypic modulation. Exp Cell Res 1999 Aug 1;250(2):273-283.
36. Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem 1987 Feb 15;161 (1):207-218.
37. Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the
principal collagen-producing cells of normal rat liver. Proc Natl Acad
Sci U S A 1985 Dec;82(24):8681-8685.
38. Knook DL, Seffelaar AM, de Leeuw AM. Fat-storing cells of the rat
liver. Their isolation and purification. Exp Cell Res 1982 Jun; 139(2):468-471.
39. Haas T, Dongradi G, Villeboeuf F, de Viel E, Verrier J, Hillion D.
Technical and clinical data on high-performance hemofiltration:
twelve patients during one year. Artif Organs 1985 May;9
(2):164-168.
40. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP,
Iredale JP, et al. Galectin-3 regulates myofibroblast activation and
hepatic fibrosis. Proc Natl Acad Sci U S A 2006 Mar 28;103 (13):5060-5065.
41. Kalinichenko VV, Bhattacharyya D, Zhou Y, Gusarova GA, Kim W,
Shin B, et al. Foxf1 +/- mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury. Hepatology 2003 Jan;37(1):107-117.
42. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006 Feb;130(2):435-452.
43. Smart DE, Green K, Oakley F, Weitzman JB, Yaniv M, Reynolds G,
Mann J, Millward-Sadler H, Mann DA. JunD is a profibrogenic
transcription factor regulated by Jun N-terminal kinase-independent phosphorylation. Hepatology 44: 1432–1440,2006.
44. Gutierrez-Ruiz MC, Gomez-Quiroz LE. Liver fibrosis: searching for
cell model answers. Liver Int 2007 May;27(4):434-439.
45. Friedman SL, Roll FJ, Boyles J, Arenson DM, Bissell DM. Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J Biol Chem 1989 Jun 25; 264(18):10756-10762.
46. Friedman SL, Arthur MJ. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix
synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest 1989 Dec;84 (6):1780-1785.
47. Matsuoka M, Tsukamoto H. Stimulation of hepatic lipocyte collagen
production by Kupffer cell-derived transforming growth factor beta:
implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepatology 1990 Apr;11(4):599-605.
48. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a
modulator of hepatic fibrogenesis. Seminars in Liver Disease 2001
Aug;21(3):351-372.
49. Davis BH. Transforming growth factor beta responsiveness is modulated by the extracellular collagen matrix during hepatic ito cell culture. J Cell Physiol 1988 Sep;136(3):547-553.
50. Wells RG. The role of matrix stiffness in hepatic stellate cell
activation and liver fibrosis. J Clin Gastroenterol 2005 Apr;39(4
Suppl 2):S158-161.
51. Han YP, Zhou L, Wang JH, Xiong SG, Garner WL, French SW, et al.
Essential role of matrix metalloproteinases in interleukin-1-induced
myofibroblastic activation of hepatic stellate cell in collagen. Journal of Biological Chemistry 2004 Feb 6;279(6):4820-4828.
52. Takahra T, Smart DE, Oakley F, Mann DA. Induction of
myofibroblast MMP-9 transcription in three-dimensional collagen I
gel cultures: regulation by NF-kappa B, AP-1 and Sp1. International
Journal of Biochemistry & Cell Biology 2004 Feb;36(2):353-363.
53. van de Bovenkamp M, Groothuis GMM, Draaisma AL, Merema MT,
Bezuijen JI, van Gils MJ, et al. Precision-cut liver slices as a new
model to study toxicity-induced hepatic stellate cell activation in a
physiologic milieu. Toxicological Sciences 2005 May;85(1):632-638.
54. Melgert BN, Olinga P, Van der Laan JMS, Weert B, Cho J, Schuppan D, et al. Targeting dexamethasone to Kupffer cells: Effects on liver
inflammation and fibrosis in rats. Hepatology 2001 Oct;34 (4):719-728.
55. Hagens WI, Olinga P, Meijer DKF, Groothuis GMM, Beljaars L,
Poelstra K. Gliotoxin non-selectively induces apoptosis in fibrotic and
normal livers. Liver International 2006 Mar;26(2):232-239.
56. Guyot C, Combe C, Balabaud C, Bioulac-Sage P, Desmouliere A.
Fibrogenic cell fate during fibrotic tissue remodelling observed in rat
and human cultured liver slices. Journal of Hepatology 2007 Jan;46
(1):142-150.
57. van de Bovenkamp M, Groothuis GMM, Meijer DKF, Slooff
MJH, Olinga P. Human liver slices as an in vitro model to study
toxicity-induced hepatic stellate cell activation in a multicellular milieu. Chemico-Biological Interactions 2006 Jul 25;162(1):62-69.
58. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of
TGF-beta in hepatic fibrosis. Frontiers in Bioscience 2002
Apr;7:D793-D807.
59. Bachem MG, Meyer D, Melchior R, Sell KM, Gressner AM.
Activation of Rat-Liver Perisinusoidal Lipocytes by Transforming
Growth-Factors Derived from Myofibroblastlike Cells - a Potential
Mechanism of Self Perpetuation in Liver Fibrogenesis. Journal of
Clinical Investigation 1992 Jan;89(1):19-27.
60. Meyer DH, Bachem MG, Gressner AM. Modulation of Hepatic
Lipocyte Proteoglycan Synthesis and Proliferation by Kupffer
Cell-Derived Transforming Growth-Factors Type-Beta-1 and
Type-Alpha. Biochemical and Biophysical Research Communications
1990 Sep 28;171(3):1122-1129.
61. Win KM, Charlotte F, Mallat A, Cherqui D, Martin N, Mavier P, et
al. Mitogenic Effect of Transforming Growth-Factor-Beta-1 on
Human Ito Cells in Culture - Evidence for Mediation by Endogenous
Platelet-Derived Growth-Factor. Hepatology 1993 Jul;18(1):137-145.
62. Schirmacher P, Geerts A, Pietrangelo A, Dienes HP, Rogler CE.
Hepatocyte Growth-Factor Hepatopoietin-a Is Expressed in
Fat-Storing Cells from Rat-Liver but Not Myofibroblast-Like Cells
Derived from Fat-Storing Cells. Hepatology 1992 Jan;15(1):5-11.
63. Pinzani M, Abboud HE, Gesualdo L, Abboud SL. Regulation of
Macrophage Colony-Stimulating Factor in Liver Fat-Storing Cells by
Peptide Growth-Factors. American Journal of Physiology 1992 Apr;262(4):C876-C881.
64. Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of
Beta-Platelet-Derived Growth-Factor Receptor in Rat Hepatic
Lipocytes during Cellular Activation in-Vivo and in Culture. Journal
of Clinical Investigation 1994 Oct;94(4):1563-1569.
65. Carloni V, DeFranco RMS, Caligiuri A, Gentlini A, Sciammetta SC,
Baldi E, et al. Cell adhesion regulates platelet-derived growth
factor-induced MAP kinase and PI-3 kinase activation in stellate cells. Hepatology 2002 Sep;36(3):582-591.
66. Marra F, Gentilini A, Pinzani M, Choudhury GG, Parola M, Herbst H, et al. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor''s actions on hepatic stellate cells. Gastroenterology 1997 Apr;112(4):1297-1306.
67. Adachi T, Togashi H, Suzuki A, Kasai S, Ito J, Sugahara K, et al.
NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation
of hepatic stellate cells. Hepatology 2005 Jun;41(6):1272-1281.
68. Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyazaki A, Watanabe
S, et al. Immunocytochemical Detection of Desmin in Fat-Storing
Cells (Ito-Cells). Hepatology 1984;4(4):709-714.
69. Uemura M, Swenson ES, Gaca MDA, Giordano FJ, Reiss M, Wells
RG. Smad2 and smad3 play different roles in rat hepatic stellate cell
function and alpha-smooth muscle actin organization. Molecular
Biology of the Cell 2005 Sep;16(9):4214-4224.
70. Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of
Platelet-Derived Growth-Factor and Other Polypeptide Mitogens on DNA-Synthesis and Growth of Cultured Rat-Liver Fat-Storing Cells. Journal of Clinical Investigation 1989 Dec;84(6):1786-1793.
71. Marra F, Pinzani M, Defranco R, Laffi G, Gentilini P. Involvement of Phosphatidylinositol 3-Kinase in the Activation of Extracellular Signal-Regulated Kinase by Pdgf in Hepatic Stellate Cells. Febs Letters 1995 Dec 4;376(3):141-145.
72. Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, et al. The
role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. Journal of Biological Chemistry 2003 Mar 7;278(10):8083-8090.
73. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Seminars in Liver Disease 2001 Aug;21(3):397-416.
74. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three
Akts. Genes & Development 1999 Nov 15;13(22):2905-2927.
75. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more
than just a road to PKB. Biochemical Journal 2000 Mar
15;346:561-576.
76. Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzani M, Romanelli RG,
et al. Extracellular signal-regulated kinase activation differentially
regulates platelet-derived growth factor''s actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology 1999 Oct;30(4):951-958.
77. Inagaki Y, Okazaki I. Emerging insights into transforming growth
factor beta Smad signal in hepatic fibrogenesis. Gut 2007
Feb;56(2):284-292.
78. Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee
MA, et al. Reduced atherosclerosis in MyD88-null mice links
elevated serum cholesterol levels to activation of innate immunity
signaling pathways. Nature Medicine 2004 Apr;10(4):416-421.
79. Uesugi T, Froh M, Arteel GE, Bradford BAU, Thurman RG. Toll-like
receptor 4 is involved in the mechanism of early alcohol-induced liver
injury in mice. Hepatology 2001 Jul;34(1):101-108.
80. Kawai T, Akira S. TLR signaling. Cell Death and Differentiation
2006 May;13(5):816-825.
81. Maubach G, Lim MCC, Zhuo L. Nuclear Cathepsin F Regulates
Activation Markers in Rat Hepatic Stellate Cells. Molecular Biology of the Cell 2008 Oct;19(10):4238-4248.
82. Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B, et
al. Caspase 8 small interfering RNA prevents acute liver failure in
mice. Proceedings of the National Academy of Sciences of the United
States of America 2003 Jun 24;100(13):7797-7802.
83. Song EW, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA
interference targeting Fas protects mice from fulminant hepatitis.
Nature Medicine 2003 Mar;9(3):347-351.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊