(3.235.191.87) 您好!臺灣時間:2021/05/14 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇煊翔
研究生(外文):Hsuan-Hsiang Su
論文名稱:低溫高壓技術於改善高介電常數材料之研究
論文名稱(外文):Improvement on low-temperature deposited high-k materials by high-pressure treatment
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:58
中文關鍵詞:低溫高壓技術高介電常數材料
外文關鍵詞:high-pressurehigh-kHfO2ZrO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
在這個研究裡,低溫高壓氧(臭氧)可以有效改善低溫成長金屬氧化物的介電特性。在實驗中利用sputter在常溫下沉積厚度大約為5nm的HfO2和ZrO2,再使用低溫處理技術來取代傳統高溫退火。而經
過UV光照射下,氧反應形成臭氧,在文獻上臭氧的氧化能力是比氧來的強,藉由高氧化力的臭氧可以進一步抑制漏電流以及改善電容特性。由XPS材料分析指出經過高氧化力的臭氧處理是可以有效增強Hf-O-Hf及Zr-O-Zr的鍵結,由於缺陷的減少,漏電流降為10-8,而載子傳輸機制也由原來的trap-assisted tunneling 轉變Schottky thermal emission 主導。
所有的實驗流程都是控制在150度下,這種低溫高壓氧及利用高氧化力的臭氧來改善介電質的技術是相當新穎的,將來也有機會應用於對低溫製程有很大的要求的可撓式基板上。
In this study, high-pressure oxygen (O2 and O3) technologies were employed originally to effectively improve the properties of low-temperature-deposited metal oxide dielectric films. In this work, 5 nm ultra-thin HfO2 and ZrO2 films were deposited by sputtering method at room temperature. Then, the low temperature high-pressure oxygen treatments at 150 °C were used to replace the conventional high temperature annealing for HfO2 and ZrO2 improvement. From the experimental results, O3 produced by UV light illumination in O2 ambient has the superior passivation ability than O2, and it can further suppress leakage current density and improve capacitance characteristics.
According to the XPS analyses, the absorption peaks of Hf-O and Zr-O bonding energies apparently raise and the quantity of oxygen in HfO2 and ZrO2 film also increases from XPS measurement. In addition, both the leakage current density of 5nm HfO2 and ZrO2 film can be improved to 10-8 A/cm2 at |Vg| = 3 V, and the conduction mechanisms were transferred from trap-assisted tunneling to thermal emission because of the significantly reduction of defects.
All the experiment processes in this study, the temperatures were controlled below 150 °C. The proposed low-temperature and high pressure O2 or O3 treatment for improving high-k dielectric films is novel and applicable for the future flexible electronics.
English Abstract  --------------------------i
Chinese Abstract  ------------------------ iii
Chinese Acknowledgment ------------------ iv
Contents  ------------------------------------------ v
Table Captions ---------------------------------- vii
Figure Captions -------------------------------- viii
Chapter 1 Introduction
1.1 Gate dielectric ------------------------------------------------------------------- 1
1.2 Requirement of an alternative gate dielectric --------------------------------- 2
1.3 Motivation  ------------------------------------------------------------------------ 3
Chapter 2 Low-Temperature Enhancement of Sputter-Deposited HfOx Films by high-pressure oxygen treatment
2.1 Fabrication of Metal-Insulator-Silicon (MIS) and Experiment Process --- 5
2.2 Analysis of Material and Discussion  -----------------------------------------5
2.2.1 X-ray Photoelectron Spectroscopy (XPS) Analysis ------------------6
2.2.2 Transmission Electron Microscopy (TEM) Analysis  -------------- 7
2.3 Analysis of Electrical Characteristics and Discussion  -------------- 7
2.3.1 The current density-voltage (J-V) characteristics  ------------------ 7
2.3.2 Conduction Mechanism  ------------------------------------------------ 8
2.3.3 The capacitance-voltage (C-V) characteristics --------------------12
2.4 Summary  ----------------- 13
Chapter 3 Low-Temperature Enhancement of Sputter-Deposited ZrOx Films by high-pressure oxygen treatment
3.1 Fabrication of Metal-Insulator-Silicon (MIS) and Experiment Process - 14
3.2 Analysis of Material and Discussion  ---------------------------------------- 14
3.2.1 X-ray Photoelectron Spectroscopy (XPS) Analysis ----------------- 14
3.2.2 Transmission Electron Microscopy (TEM) Analysis  -------------- 15
3.3 Analysis of Electrical Characteristics and Discussion  ------------------ 16
3.3.1 The current density-voltage (J-V) characteristics  ------------------ 16
3.3.2 Conduction Mechanism  ------------------------------------------------ 16
3.3.3 The capacitance-voltage (C-V) characteristics ----------------------- 18

Chapter 4 conclusion----------------------------------------------------------20
[1] C. H. Lee, S. H. Hur, Y. C. Shin, J. H. Choi, D. G. Park, and K. Kim, Appl. Phys. Lett., vol. 86, 152908, 2005.
[2] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., vol. 89, pp. 5243, 2001.
[3] Chia-Wen Chang, Student Member ,IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 1, 2008
[4] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys., vol. 10 pp. 5243, 2001
[5] M. Liu, Q. Fang, G. He, L. Q. Zhu, and L. D. Zhang, J. Appl. Phys., vol. 101, 034107, 2007.
[6] D. Brassard, D. K. Sarkar, M. A. El Khakani, and L. Ouellet, J. Vac. Sci. Technol. A, vol. 22(3), pp. 851, 2004.
[7] Y. Ito, K. Suzulki, and R. Miura, SISPAD 2006., pp. 150, 2006.
[8] B. J. O’Sullivan, L. Pantisano, P. Roussel, R. Degraeve, G. Groeseneken, S. DeGendt, and M. M. Heyns, J. Appl. Phys., vol. 101, 044515, 2007.
[9] S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films, vol. 425, pp. 216, 2003.
[10] J. Lu, and Y. Kuo, 2004 4th IEEE Conf. Nanotech., pp. 398, 2004.
[11] H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D. L. Kwong, C. H. Tung, J. S. Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H. Ang, J. Z. Zheng, and S. Ramanathan, Appl. Phys. Lett., vol. 81, pp. 3618, 2002.
[12] C. S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, J. Vac. Sci. Technol. B, vol. 18(2), pp. 683, 2000.
[13] P.S. Bagus, F. Illas, G. Paccghioni, F. Parmigiani, J. Electron Spectrosc. Related Phenom. 100 (1999) 215.


[14] H.Y. Yu, X.D. Feng, D. Grozea, Z.H. Lu, R.N.S. Sodhi, A.M. Hor,H. Aziz, Appl. Phys. Lett. 78 (2001) 2595.
[15] J.P. Chang, Y.S. Lin, J. Appl. Phys. 90 (2001) 2964.
[16] W. J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di, IEEE Electron Devices Lett. vol. 23, No. 2, 2002.
[17] Takeshi Yamaguchi, Hideki Satake, and Noburu Fukushima, IEEE Trans. Electron Devices, vol. 51, No. 5, 2004.
[18] M. Houssa, M. Tuominen, et al., J. Appl. Phys., vol. 87, No. 12, pp. 8615, 2000.
[19] Sanghun Jeon, Hyundoek Yang, Dae-Gyu Park, and Hyunsang Hwang, Jpn. J. Appl. Phys., vol. 31, pp. 2390-2393, 2002.
[20] Dieter K. Schrodr, Wiley-INTERSCIENCE, 1998.
[21] M. Lenzlinger, and E. H. Snow, J. Appl. Phys., vol. 40, pp. 278, 1969.
[22] R. Mahapatra, A. K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, and N. G. Wright, J. Vac. Sci. Technol. B, vol. 25(1), pp. 217, 2007.
[23] P. R. Emtage, and W. Tantraporn, Phys. Rev. Lett., vol. 8, pp. 267, 1962.
[24] J. R. Yeargan, and H. L. Taylor, J. Appl. Phys., vol. 39, pp. 5600, 1968.
[25] T. FUKUDA, and H. YANAZAWA, Jpn. J. Appl. Phys., vol. 43 , pp. 936, 2004.
[26] S. W. Huang, and J. G. Hwu, IEEE Trans. Electron Devices, vol. 50, pp. 1658, 2003.
[27]Hoon Sang Choia, and Kwang Soo Seol, Vacuum 80 (2005) 310–316
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊