(3.236.122.9) 您好!臺灣時間:2021/05/09 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃光瑤
研究生(外文):Kuang-Yao Huang
論文名稱:摻鉻釔鋁石榴石晶體光纖之生長系統改良與特性研究
論文名稱(外文):Growth System Improvement and Characterization of Chromium-doped YAG Crystal Fiber
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:117
中文關鍵詞:晶體光纖
外文關鍵詞:optical amplifierASECr:YAGcrystal fiber
相關次數:
  • 被引用被引用:3
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摻鉻釔鋁石榴石晶體(Cr4+:YAG)為一引人注目的增益介質,主要是因其自發輻射頻譜半高寬,為從1253奈米至1530奈米,涵蓋了大部份的光通訊低損耗波段。如此寬頻的光譜特性,使其適合發展為光通訊用之自發輻射放大光源、光放大器、和可調波長雷射。而將晶體生長成光纖的形態具有比塊材更佳的光波導效果,同時產生更高的光增益。對於雷射的應用,因晶體光纖可承受較大之光強度且散熱較佳,可發展低損耗閥值和高效率之雷射輸出。
雷射加熱基座生長法因無坩鍋汙染,可生長高純度晶體光纖。本實驗室為解決晶體光纖直徑縮小的問題,開發一種全新的包覆晶體光纖的技術,即共同提拉雷射加熱基座生長法,以此技術可生長出雙纖衣晶體光纖結構。雖然此方法可以生長出纖心尺寸小至10微米之雙纖衣晶體光纖,但生長之雷射功率的變化很容易造成纖心直徑起伏的問題,因而影響其光輸出的效率。我們進一步研發一種可穩定雷射功率擾動之熱電容機制,即管狀藍寶石輔助共同提拉雷射加熱基座之生長法,同時結合雷射功率回授程式,以增加其穩定雷射功率的效果。利用此創新的生長法,可生長出纖心小至10微米之雙纖衣晶體光纖,且纖心均勻度符合無模態能量損耗之傳輸準則。
利用自發輻射放大和光增益等量測之結果,配合數值模擬可穫得激發光吸收截面積、自發輻射截面積、和激發光與訊號光之激發態吸收截面積。根據模擬,激發光之激發態吸收損耗對光增益影響很大,若欲解決此損耗,必需採用激發光在內纖衣傳輸之幫浦架構。而雷射的部份,我們在室溫下已成功做出一突破世界記錄之低損耗閥值的摻鉻釔鋁石榴石晶體光纖雷射。此雷射具有雙斜率的特性,在輸出穿透率為3.8%之下,其雷射閥值為2.5毫瓦;在第二雷射閥值後,其斜率效率為6.9%。利用模擬可以預估,以一7公分的雙纖衣晶體光纖,在輸出穿透率為80%之下,可獲得56%的斜率效率。我們也首次將自發輻射放大光源當做生醫檢測系統裡之偵測光源,成功地達成一3.5微米之縱向解析度。
Cr4+:YAG is an attractive gain medium due to its broad 3-dB emission spectra all the way from 1253 nm to 1530 nm that just cover the low loss window of silica fiber. Such a broadband characteristic offers a potential to develop a broadband amplified spontaneous emission (ASE) light source, optical amplifier, and tunable laser. Growing the Cr4+:YAG bulk crystal into fiber form is necessary for generating larger gain by the better optical confinement of the waveguide structure. For the application of laser, it is superior to bulk crystal for reduced lasing threshold and better slope efficiency due to also the optical confinement effect and better heat dissipation.
Laser heated pedestal growth (LHPG) method has been used to grow high purity crystal fibers due to its crucible free nature. A novel cladding technique, co-drawing LHPG (CDLHPG), was developed to solve core-reduction problem and obtained a double-clad fiber (DCF) structure. But the power fluctuation of heating laser caused large core variation of Cr4+:YAG DCF, and further impaired the optical performance. An innovating method for suppressing the fluctuation of heating power, sapphire tube assisted CDLHPG technique, was developed and combined with power feedback control program. By this technique, 10-μm-core Cr4+:YAG DCFs which meet the adiabatic propagation criterion were fabricated.
By comparing with ASE and optical amplifier experimental data, cross sections of pump absorption, emission, and excited-state absorptions (ESAs) of pump and signal were determined. Pump ESA loss limited the optical performance that could be solve by using cladding pump scheme. A record-low threshold Cr4+:YAG DCF laser with two slopes with respect to absorbed pump power was achieved at room temperature. The threshold pump powers were 2.5 mW and 96 mW in the low and high absorbed pump powers with the same output coupler transmittance of 3.8%, respectively. The slope efficiencies of the fiber laser were 0.4% and 6.9%, respectively. By numerical simulation, 56% slope efficiency can be achieved with a length of 7 cm and an output reflectance of 80%. Our group also firstly used the ASE as the light source of optical coherence tomography, an axial resolution of 3.5 μm was achieved.
中文摘要
Abstract
Table of Contents
List of Tables
List of Figures
Chapter 1 Introduction
Chapter 2 Numerical model of Cr4+:YAG crystal fiber devices
2.1 Properties of Cr4+:YAG crystal
2.2 Energy levels of Cr4+:YAG
2.3 Distributed model of ASE and amplifier
2.4 Lumped model of laser
Chapter 3 Cr4+:YAG crystal fiber growth
3.1 Laser heated pedestal growth (LHPG) system
3.2 Single crystal fiber growth
3.3 Double-clad crystal fiber (DCF) growth
3.4 Sapphire tube assisted co-drawing LHPG growth
3.4.1 Sapphire tube assisted growth system
3.4.2 Growth system improvement
3.4.3 Fabrication of 10-μm-core DCF
Chapter 4 Characterization of Cr4+:YAG crystal fibers
4.1 Structure analysis
4.1.1 X-ray diffraction analysis of crystallinity
4.1.2 High-resolution transmission electron microscopy of DCF
4.2 Composition analysis
4.2.1 Single crystal fiber
4.2.2 Double-clad crystal fiber
4.3 Fluorescence mapping and analysis
4.3.1 Fluorescence and doping profiles of Cr:YAG single crystal fiber
4.3.2 Fluorescence and doping profiles of Cr:YAG DCFs
4.3.3 Emission and absorption spectra of Cr:YAG DCF in the inner cladding region
4.4 Propagation loss analysis
Chapter 5 Optical performance and discussion
5.1 ASE light source
5.2 Optical amplifier
5.2.1 Insertion loss
5.2.2 Gain measurement
5.3 Analysis and discussion
5.3.1 Cross sections of absorption, emission, and ESAs of pump and signal
5.3.2 Cladding pump scheme
5.3.3 Pump ESA spectrum
5.3.4 Comparison between CDF and EDF
5.4 Double-clad fiber laser
5.4.1 Laser performance
5.4.2 Optimization of DCF laser
5.4.3 Estimation of tuning range
5.5 Application: light source of optical coherence tomography
Chapter 6 Conclusions and future work
References
Biography
Publication list
Chapter 1
[1.1] T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1 bit/s/Hz,” IEEE J. Quantum Electron. 34, 2080 (1998).
[1.2] B. R. Wu, C. F. Lin, L. W. Laih, and T. T. Shih, “Extremely broadband InGaAsP/InP superluminescent diodes,” Electron. Lett. 36, 2093 (2000).
[1.3] J. W. Lou, T. J. Xia, O. Boyraz, C. X. Shi, G. A. Nowak, and M. N. Islam, “Broader and flatter suppercontinuum spectra in dispersion-tailored fibers,” Technical Digest, 32 (1997).
[1.4] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026 (1987).
[1.5] J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6-μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645 (1990).
[1.6] C. A. Millar and P. W. France, “Diode-laser pumped erbium-doped fluorozirconate fiber amplifier for the 1530 nm communications window,” Electron. Lett. 26, 634 (1990).
[1.7] Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 23, 274 (1998)
[1.8] T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “1.47 μm band Tm3+ doped fluoride fiber amplifier using a 1.064 μm upconversion pumping scheme,” Electron. Lett. 29, 110 (1993).
[1.9] A. Cucinotta, F. Poli, and S. Selleri, “Gain characteristics of thulium-doped tellurite fiber amplifiers by dual-wavelength (800 nm + 1064 nm) pumping,” OFC. 2, 625 (2003).
[1.10] E. Taylor, L. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16, 777 (2004).
[1.11] Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped fluoride fiber amplifier operating at 1.31 μm,” Opt. Lett. 16, 1747 (1991)
[1.12] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791 (1984).
[1.13] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004).
[1.14] K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” to appear in Opt. Exp. (2008).
Chapter 2
[2.1] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA Proc. Adv. Solid-State Lasers 15, 334, (1993).
[2.2] W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996).
[2.3] S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 323, (1995).
[2.4] A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287 (2002).
[2.5] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q switches,” Prog. Quantum Electron. 28, 249 (2004).
[2.6] S. Kuck, “Laser-related spectroscopy of ion-doped crystal for tunable solid-state lasers,” Appl. Phys. B: Lasers and Optics 72, 515 (2001).
[2.7] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopant on the Cr4+ content of Cr-doped Y3Al5O12,” J. Cryst. Growth 180, 81 (1997).
[2.8] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr,Ca:Y3Al5O12,” J. Cryst. Growth 140, 349 (1994).
[2.9] J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” J. Cryst. Growth 274, 522 (2005).
[2.10] C. N. Tsai, Y. S. Lin, K. Y. Huang, Y. S. Lin, C. C. Lai, and S. L. Huang. “Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber with pre-growth perimeter deposition,” to appear in Jap. J. Appl. Phys. (2008).
[2.11] B. Henderson, H. G. Gallagher, T. P. Han, and M. A. Scott, “Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets,” J. Phys.: Condens. 12, 1927 (2000).
[2.12] R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333 (2003).
[2.13] Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292 (1998).
[2.14] G. Xiao, J. H. Lim, S. Yang, E. Van. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086 (1999).
[2.15] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, 1578 (2001).
[2.16] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, New York, 1999).
[2.17] C. E. Chryssou, F. D. Pasquale, and C. W. Pitt, “Improved gain performance in Yb3+-sensitized Er3+-doped alumina (Al2O3) channel optical waveguide amplifiers,” IEEE J. Lightwave Technol. 19, 345 (2001).
[2.18] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817 (1994).
[2.19] M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “Low-noise amplification of high-power pulses in multimode fibers,” IEEE Photon. Technol. Lett. 11, 650 (1999).
[2.20] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang, “Passively Q-switched quasi-three-level laser and its intracavity frequency doubling,” Appl. Opt. 41, 1075 (2002).
[2.21] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proc. Adv. Solid-State Lasers 10, 92 (1991).
Chapter 3
[3.1] J. L. Stevenson and R. B. Dyott, “Optical fiber waveguide with a single-crystal core,” Electron. Lett. 10, 449 (1974).
[3.2] B. Chalmers, H. E. Labelle, Jr., and A. I. Mlavsky, “Edge-defined, film-fed crystal growth,” J. Cryst. Growth 13/14, 84 (1972).
[3.3] N. Ohnish and T. Yao, “A novel growth technique for single-crystal fibers: the micro-Czochralski (μ-CZ) method,” Jap. J. Appl. Phys. 28, L278 (1989).
[3.4] D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142, 339 (1994).
[3.5] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005).
[3.6] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[3.7] C. W. Lan and C. Y. Tu, “Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals,” J. Cryst. Growth 233, 523 (2001).
Chapter 4
[4.1] M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Rühle, “Electron states of YAG probed by energy-loss near-edge spectrometry and Ab Initio calculations,” Phil. Mag. B 79, 921 (1999).
[4.2] L. P. You, C. L. Heng, S. Y. Ma, Z. C. Ma, W. H. Zong, Z. L. Wu, and G. G. Qin, “Precipitation and crystallization of nanometer Si clusters in annealed Si-rich SiO2 films,” J. Cryst. Growth 212, 109 (2000).
[4.3] O. Conde, A. G. Rolo, M. J. M. Gomes, C. Ricolleau, and D. J. Barber, “HRTEM and GIXD studies of CdS nanocrystals embedded in Al2O3 films produced by magnetron RF-sputtering,” J. Cryst. Growth 247, 371 (2003).
[4.4] Y. J. Bai, Z. G. Liu, X. G. Xu, D. L. Cui, X. P. Hao, X. Feng, and Q. L. Wang, “Precipitation of InN nanocrystals by solvo-thermal method,” J. Cryst. Growth 241, 189 (2002).
[4.5] Z. Sun, D. Yuan, X. Duan, X. Wei, H. Sun, C. Luan, Z. Wang, X. Shi, D. Xu, and M. Lv, “Preparation and characterization of Co2+-doped Y3Al5O12 nano-crystal powders by sol-gel technique,” J. Cryst. Growth 260, 171 (2004).
[4.6] F. Yun, B. J. Hinds, S. Hatatani, S. Oda, Q. X. Zhao, and M. Willander, “Study of structural and optical properties of nanocrystalline silicon embedded in SiO2,” Thin Solid Films 375, 137 (2000).
[4.7] W. T. Young, L. K. Falk, H. Lemercier, V. Peltier-Baron, Y. Menke, and S. Hampshire, “The crystallization of the yttrium-sialon glass: Y15.2Si14.7Al18.7O54.1N7.4,” J. Non-Crystalline Solids 270, 6 (2000).
[4.8] L. Kepinski, D. Hreniak, and W. Strek, “Microstructure and luminescence properties of nanocrystalline cerium silicates,” J. Alloys and Compounds 341, 203 (2002).
[4.9] P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66, 851 (1995).
[4.10] M. Aparicio, R. Moreno, and A. Duran, “Colloidal stability and sintering of yttria-silica and yttria-silica-alumina aqueous suspensions,” J. Euro. Ceramic Soc. 19, 1717 (1999).
[4.11] K. Sato, T. Izumi, M. Iwase, Y. Show, H. Morisaki, T. Yaguchi, and T. Kamino, “Nucleation and growth of nanocrystalline silicon studied by TEM, XPS and ESR,” Appl. Surface Sci. 216, 376 (2003).
[4.12] A. M. Tonejc, I. Djerdj, and A. Tonejc, “Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders,” Mater. Sci. Engin.: B 85, 55 (2001).
[4.13] L. Kepinski, and M. Wolcyrz, “Nanocrystalline rare earth silicates: structure and properties,” Mater. Chem. Phys. 81, 396 (2003).
[4.14] J. Dutkiewicz, L. Stoch, J. Morgiel, G. Kostorz, and P. Stoch, “Analytical and HREM study of the early stages of SiO2-Al2O3-(Mg, Zn)O glass crystallization,” Mater. Chem. Phys. 81, 411 (2003).
[4.15] J. M. McHale, A. Auroux, A. J. Perrotta, and A. Navrotsky, “Surface energies and thermodynamic phase stability in nanocrystalline aluminas,” Science 277, 788 (1997).
[4.16] Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56, 10882 (1997).
[4.17] M. Yamaga, B. Henderson, and K. P. O’Donnell, “Line shape of the Cr3+ luminescence in garnet crystals,” Phys. Rev. B 46, 3273 (1992).
[4.18] X. Wu, S. Huang, U. Hommerich, W. M. Yeh, B. G. Aitken, and M. Newhouse, “Spectroscopy of Cr4+ in MgCaBa aluminate glass. The coupling of 3T2 and 1E states,” Chem. Phys. Lett. 233, 28 (1995).
[4.19] V. Felice, B. Dussardier, J. K. Jones, G. Monnom, and D. B. Ostrowsky, “Chromium-doped silica optical fibres: influence of the core composition on the Cr oxidation states and crystal field,” Opt. Mater. 16, 269 (2001).
[4.20] T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Crystalline Solids 220, 139 (1997).
[4.21] V. V. Dvoyrin, V. M. Mashinsky, V. B. Neustruev, E. M. Dianov, A. N. Guryanov, and A. A. Umnikov, “Effective room-temperature luminescence in annealed chromium-doped silicate optical fibers,” J. Opt. Soc. Of Amer. B 20, 280 (2003).
[4.22] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Opt. Mater. 20, 63 (2002).
[4.23] J. C Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photon. Technol. Lett. 19, 595 (2007).
[4.24] J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. Optoelecton. 138, 343 (1991).
[4.25] T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432 (1992).
[4.26] D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Technol. J. 48, 3187 (1969).
[4.27] C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” IEEE J. Lightwave Technol. 15, 403 (1997).
[4.28] D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1991).
[4.29] F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum Electron. 26, 977 (1994).
[4.30] C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006).
Chapter 5
[5.1] G. M. Davis, I. Yokohama, S. Sudo, and K. Kubodera, “1.3-μm Nd:YAG crystal fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 459 (1991).
[5.2] C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182 (1964).
[5.3] N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region of 1.34-1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54 (1990).
[5.4] H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958 (1992).
[5.5] K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814 (1993).
[5.6] E. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B. 49, 15505 (1994).
[5.7] Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantium Electron. 31, 1738 (1995).
[5.8] S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209 (1997).
[5.9] J. C. Diettrich, I. T. McKinnie, and D. M. Warringtion, “The influence of active ion concentration and crystal parameters on pulsed Cr:YAG laser performance,” Opt. Commun. 167, 133 (1999).
[5.10] M. M. Liu, Principles and Applications of Optical Communications (Irwin, Chicago, 1996).
[5.11] E. Sorokin, S. Naumov, and T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 690 (2005).
[5.12] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[5.13] http://www-atom.fysik.lth.se/MedOpt/index_files/innehall_files/lectures/Intro
%20Med%20Optics.pdf
[5.14] Y. Gottesman, E. V. K. Rao, H. Sillard, and J. Jacquet, “Modeling of optical low coherence reflectometry recorded Bragg reflectograms: Evidence to a decisive role of Bragg spectral selectivity,” IEEE J. Lightwave Technol. 20, 489 (2002).
Chapter 6
[6.1] S. Ming, D. J. Feng, Y. C. Huang, T. S. Lay, S. L. Huang, P. Yeh, and W. H. Cheng, “Mode matching and insertion loss in ultra-broadband Cr-doped multimode fibers,"Opt. Lett. 33, 785 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔