|
Chapter 1 [1.1] T. Ono and Y. Yano, “Key technologies for terabit/second WDM systems with high spectral efficiency of over 1 bit/s/Hz,” IEEE J. Quantum Electron. 34, 2080 (1998). [1.2] B. R. Wu, C. F. Lin, L. W. Laih, and T. T. Shih, “Extremely broadband InGaAsP/InP superluminescent diodes,” Electron. Lett. 36, 2093 (2000). [1.3] J. W. Lou, T. J. Xia, O. Boyraz, C. X. Shi, G. A. Nowak, and M. N. Islam, “Broader and flatter suppercontinuum spectra in dispersion-tailored fibers,” Technical Digest, 32 (1997). [1.4] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026 (1987). [1.5] J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6-μm Er3+ doped silica fiber amplifier,” Electron. Lett. 26, 1645 (1990). [1.6] C. A. Millar and P. W. France, “Diode-laser pumped erbium-doped fluorozirconate fiber amplifier for the 1530 nm communications window,” Electron. Lett. 26, 634 (1990). [1.7] Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification,” Opt. Lett. 23, 274 (1998) [1.8] T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “1.47 μm band Tm3+ doped fluoride fiber amplifier using a 1.064 μm upconversion pumping scheme,” Electron. Lett. 29, 110 (1993). [1.9] A. Cucinotta, F. Poli, and S. Selleri, “Gain characteristics of thulium-doped tellurite fiber amplifiers by dual-wavelength (800 nm + 1064 nm) pumping,” OFC. 2, 625 (2003). [1.10] E. Taylor, L. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16, 777 (2004). [1.11] Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped fluoride fiber amplifier operating at 1.31 μm,” Opt. Lett. 16, 1747 (1991) [1.12] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791 (1984). [1.13] C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004). [1.14] K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” to appear in Opt. Exp. (2008). Chapter 2 [2.1] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA Proc. Adv. Solid-State Lasers 15, 334, (1993). [2.2] W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996). [2.3] S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 323, (1995). [2.4] A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287 (2002). [2.5] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q switches,” Prog. Quantum Electron. 28, 249 (2004). [2.6] S. Kuck, “Laser-related spectroscopy of ion-doped crystal for tunable solid-state lasers,” Appl. Phys. B: Lasers and Optics 72, 515 (2001). [2.7] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopant on the Cr4+ content of Cr-doped Y3Al5O12,” J. Cryst. Growth 180, 81 (1997). [2.8] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr,Ca:Y3Al5O12,” J. Cryst. Growth 140, 349 (1994). [2.9] J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” J. Cryst. Growth 274, 522 (2005). [2.10] C. N. Tsai, Y. S. Lin, K. Y. Huang, Y. S. Lin, C. C. Lai, and S. L. Huang. “Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber with pre-growth perimeter deposition,” to appear in Jap. J. Appl. Phys. (2008). [2.11] B. Henderson, H. G. Gallagher, T. P. Han, and M. A. Scott, “Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets,” J. Phys.: Condens. 12, 1927 (2000). [2.12] R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333 (2003). [2.13] Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34, 292 (1998). [2.14] G. Xiao, J. H. Lim, S. Yang, E. Van. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086 (1999). [2.15] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, 1578 (2001). [2.16] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, New York, 1999). [2.17] C. E. Chryssou, F. D. Pasquale, and C. W. Pitt, “Improved gain performance in Yb3+-sensitized Er3+-doped alumina (Al2O3) channel optical waveguide amplifiers,” IEEE J. Lightwave Technol. 19, 345 (2001). [2.18] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817 (1994). [2.19] M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “Low-noise amplification of high-power pulses in multimode fibers,” IEEE Photon. Technol. Lett. 11, 650 (1999). [2.20] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang, “Passively Q-switched quasi-three-level laser and its intracavity frequency doubling,” Appl. Opt. 41, 1075 (2002). [2.21] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proc. Adv. Solid-State Lasers 10, 92 (1991). Chapter 3 [3.1] J. L. Stevenson and R. B. Dyott, “Optical fiber waveguide with a single-crystal core,” Electron. Lett. 10, 449 (1974). [3.2] B. Chalmers, H. E. Labelle, Jr., and A. I. Mlavsky, “Edge-defined, film-fed crystal growth,” J. Cryst. Growth 13/14, 84 (1972). [3.3] N. Ohnish and T. Yao, “A novel growth technique for single-crystal fibers: the micro-Czochralski (μ-CZ) method,” Jap. J. Appl. Phys. 28, L278 (1989). [3.4] D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142, 339 (1994). [3.5] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005). [3.6] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003). [3.7] C. W. Lan and C. Y. Tu, “Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals,” J. Cryst. Growth 233, 523 (2001). Chapter 4 [4.1] M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Rühle, “Electron states of YAG probed by energy-loss near-edge spectrometry and Ab Initio calculations,” Phil. Mag. B 79, 921 (1999). [4.2] L. P. You, C. L. Heng, S. Y. Ma, Z. C. Ma, W. H. Zong, Z. L. Wu, and G. G. Qin, “Precipitation and crystallization of nanometer Si clusters in annealed Si-rich SiO2 films,” J. Cryst. Growth 212, 109 (2000). [4.3] O. Conde, A. G. Rolo, M. J. M. Gomes, C. Ricolleau, and D. J. Barber, “HRTEM and GIXD studies of CdS nanocrystals embedded in Al2O3 films produced by magnetron RF-sputtering,” J. Cryst. Growth 247, 371 (2003). [4.4] Y. J. Bai, Z. G. Liu, X. G. Xu, D. L. Cui, X. P. Hao, X. Feng, and Q. L. Wang, “Precipitation of InN nanocrystals by solvo-thermal method,” J. Cryst. Growth 241, 189 (2002). [4.5] Z. Sun, D. Yuan, X. Duan, X. Wei, H. Sun, C. Luan, Z. Wang, X. Shi, D. Xu, and M. Lv, “Preparation and characterization of Co2+-doped Y3Al5O12 nano-crystal powders by sol-gel technique,” J. Cryst. Growth 260, 171 (2004). [4.6] F. Yun, B. J. Hinds, S. Hatatani, S. Oda, Q. X. Zhao, and M. Willander, “Study of structural and optical properties of nanocrystalline silicon embedded in SiO2,” Thin Solid Films 375, 137 (2000). [4.7] W. T. Young, L. K. Falk, H. Lemercier, V. Peltier-Baron, Y. Menke, and S. Hampshire, “The crystallization of the yttrium-sialon glass: Y15.2Si14.7Al18.7O54.1N7.4,” J. Non-Crystalline Solids 270, 6 (2000). [4.8] L. Kepinski, D. Hreniak, and W. Strek, “Microstructure and luminescence properties of nanocrystalline cerium silicates,” J. Alloys and Compounds 341, 203 (2002). [4.9] P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66, 851 (1995). [4.10] M. Aparicio, R. Moreno, and A. Duran, “Colloidal stability and sintering of yttria-silica and yttria-silica-alumina aqueous suspensions,” J. Euro. Ceramic Soc. 19, 1717 (1999). [4.11] K. Sato, T. Izumi, M. Iwase, Y. Show, H. Morisaki, T. Yaguchi, and T. Kamino, “Nucleation and growth of nanocrystalline silicon studied by TEM, XPS and ESR,” Appl. Surface Sci. 216, 376 (2003). [4.12] A. M. Tonejc, I. Djerdj, and A. Tonejc, “Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders,” Mater. Sci. Engin.: B 85, 55 (2001). [4.13] L. Kepinski, and M. Wolcyrz, “Nanocrystalline rare earth silicates: structure and properties,” Mater. Chem. Phys. 81, 396 (2003). [4.14] J. Dutkiewicz, L. Stoch, J. Morgiel, G. Kostorz, and P. Stoch, “Analytical and HREM study of the early stages of SiO2-Al2O3-(Mg, Zn)O glass crystallization,” Mater. Chem. Phys. 81, 411 (2003). [4.15] J. M. McHale, A. Auroux, A. J. Perrotta, and A. Navrotsky, “Surface energies and thermodynamic phase stability in nanocrystalline aluminas,” Science 277, 788 (1997). [4.16] Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56, 10882 (1997). [4.17] M. Yamaga, B. Henderson, and K. P. O’Donnell, “Line shape of the Cr3+ luminescence in garnet crystals,” Phys. Rev. B 46, 3273 (1992). [4.18] X. Wu, S. Huang, U. Hommerich, W. M. Yeh, B. G. Aitken, and M. Newhouse, “Spectroscopy of Cr4+ in MgCaBa aluminate glass. The coupling of 3T2 and 1E states,” Chem. Phys. Lett. 233, 28 (1995). [4.19] V. Felice, B. Dussardier, J. K. Jones, G. Monnom, and D. B. Ostrowsky, “Chromium-doped silica optical fibres: influence of the core composition on the Cr oxidation states and crystal field,” Opt. Mater. 16, 269 (2001). [4.20] T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Crystalline Solids 220, 139 (1997). [4.21] V. V. Dvoyrin, V. M. Mashinsky, V. B. Neustruev, E. M. Dianov, A. N. Guryanov, and A. A. Umnikov, “Effective room-temperature luminescence in annealed chromium-doped silicate optical fibers,” J. Opt. Soc. Of Amer. B 20, 280 (2003). [4.22] X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Opt. Mater. 20, 63 (2002). [4.23] J. C Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photon. Technol. Lett. 19, 595 (2007). [4.24] J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. Optoelecton. 138, 343 (1991). [4.25] T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432 (1992). [4.26] D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Technol. J. 48, 3187 (1969). [4.27] C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” IEEE J. Lightwave Technol. 15, 403 (1997). [4.28] D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1991). [4.29] F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum Electron. 26, 977 (1994). [4.30] C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306 (2006). Chapter 5 [5.1] G. M. Davis, I. Yokohama, S. Sudo, and K. Kubodera, “1.3-μm Nd:YAG crystal fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 459 (1991). [5.2] C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182 (1964). [5.3] N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of a Y3Al5O12:Cr4+ laser in wavelength region of 1.34-1.6 μm,” Bull. Acad. Sci. USSR, Phys. Ser. 54, 54 (1990). [5.4] H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958 (1992). [5.5] K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814 (1993). [5.6] E. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B. 49, 15505 (1994). [5.7] Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantium Electron. 31, 1738 (1995). [5.8] S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209 (1997). [5.9] J. C. Diettrich, I. T. McKinnie, and D. M. Warringtion, “The influence of active ion concentration and crystal parameters on pulsed Cr:YAG laser performance,” Opt. Commun. 167, 133 (1999). [5.10] M. M. Liu, Principles and Applications of Optical Communications (Irwin, Chicago, 1996). [5.11] E. Sorokin, S. Naumov, and T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 690 (2005). [5.12] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991). [5.13] http://www-atom.fysik.lth.se/MedOpt/index_files/innehall_files/lectures/Intro %20Med%20Optics.pdf [5.14] Y. Gottesman, E. V. K. Rao, H. Sillard, and J. Jacquet, “Modeling of optical low coherence reflectometry recorded Bragg reflectograms: Evidence to a decisive role of Bragg spectral selectivity,” IEEE J. Lightwave Technol. 20, 489 (2002). Chapter 6 [6.1] S. Ming, D. J. Feng, Y. C. Huang, T. S. Lay, S. L. Huang, P. Yeh, and W. H. Cheng, “Mode matching and insertion loss in ultra-broadband Cr-doped multimode fibers,"Opt. Lett. 33, 785 (2008).
|