(3.238.96.184) 您好!臺灣時間:2021/05/12 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱建良
研究生(外文):Chien-Liang Chiu
論文名稱:適用於光子積體晶粒之多模光波導交叉元件及彎轉鏡面耦合器
論文名稱(外文):Multimode Waveguide Crossings and Turning Mirror Couplers for Photonic Integrated Circuits
指導教授:賴聰賢
指導教授(外文):Tsong-Sheng Lay
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:132
中文關鍵詞:多模光波導光轉換器彎轉鏡面耦合器環形共振腔
外文關鍵詞:Photonic Integrated CircuitsMMI Turning Mirror CouplerMMIQWI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是在磷化銦的半導體光放大器之結構上設計和製作主動與被動積體化元件。研究內容包含脊狀雷射、量子井混合技術以及製作1x1和2x2光轉換器與環形共振腔結合多模光波導彎轉鏡面耦合器。我們發現當二個多模光波導交叉在自我成像位置時,有最小的擾動。利用有限時域差分法(FDTD)模擬獲得多模光波導以90 度或者60度交叉在中心位置都有最小的交錯損失。進而以對稱對摺原理,可在交叉位置形成全反射鏡面,造成入射光模彎轉進入交叉波導。實際上,為了達到內部全反射有一個Goos-Hanchen位移校正在這反射器上並且被一個平面所取代。
被動元件係利用發光波長為λ=1.41微米的晶片來製作1x1 60 度、1x1 90度、2x2 90度多模干涉垂直鏡面反射耦合器和環形共振腔結合2x2 90度多模干涉垂直鏡面反射耦合器之半導體光濾波器。(1)利用乾式蝕刻技術來製作在垂直鏡面產生全反射之深蝕刻,並且為了降低內部全反射鏡面損失我們加入Goos-Hanchen位移來校正這反射鏡,藉由垂直鏡面的設計及深蝕刻鏡面製作,使一入射至多模干涉耦合器的多模光波導轉彎,並在適當的改變多模干涉耦合器的長度,以達到所需要85:15的分光比。(2)在固定耦合器寬度之下垂直鏡面反射耦合器為傳統多模干涉耦合器之長度縮短33%,(3)應用這樣耦合器於環形共振腔之光濾波器之共振腔長縮短50%。(4)在元件的特性量測方面,2x2 90度模干涉垂直鏡面反射耦合器量測得到85:15的分光效果,並將這樣耦合器應用於環形共振腔之光濾波器可以得到自由空間的光譜範圍(FSR) 82 GHz的光譜圖。(5)這樣的單環共振器分別都被實現以磷化銦為基板,藉由分子束磊晶沉積法的砷化鎵銦/砷化鎵鋁銦材料及藉由有機金屬化學氣相沉積法的磷砷化鎵銦材料。
為將主動及被動元件積體整合在一個晶片上的需要,我們也發展了量子井混合技術。第一個方法是在λ=1.55微米的晶片,利用氬離子電漿轟擊後接著快速回火,在這製程過程後的樣品之光激螢光的強度比原來的樣品變強10倍以上並且有少量的15奈米藍移。第二個方法是使用λ=1.55微米的晶片,利用氬離子電漿轟擊跟隨濺鍍二氧化矽膜在晶片上接著快速回火,在這樣製程過程後樣品在磷砷化鎵銦材料得到90奈米藍移,並且得到多重量子井和上方覆蓋層之間的最佳距離是300奈米。另外,此方法在砷化鋁鎵銦材料得到60奈米藍移並且在轟擊後多重量子井和上方覆蓋層之間的最佳距離是200奈米。這些結果對於光子積體化的重新成長、可犧牲層的距離和積體整合製程都是非常有用。
In this thesis, ridge waveguide laser, quantum well intermixing, 1x1 and 2x2 optical switching and ring resonator with multimode-waveguide turning mirror couplers have been investigated. We develop a new design that the perturbation is the minimum when the crossing occurs at the self-image location in a low-loss multimode waveguide. We use a center-fold low-loss multimode waveguide with a single self image at the center. Such waveguides can cross at 90 degrees or 60 degrees at the center with minimal cross talk. One can reflect the incident mode into an intersecting waveguide by introducing an idea reflecting plane. In practice, the reflector is replaced by a plane for total internal reflection with correction for Goos-Hanchen shift.
Passive component forλ = 1.41 μm samples, 1x1 60-degree multimode-waveguide
turning mirror, 1x1 90-degree multimode-waveguide turning mirror, 2x2 90-degree
multimode-waveguide turning mirror and a single ring resonator with 2x2
multimode-waveguide turning mirror couplers have been fabricated. (1) The
multimode-waveguide turning mirror coupler with cross coupling factor (K) of 0.15 is
achieved by an etched facet with a correction for Goos-Hanchen shift. (2) The length of the
multimode-waveguide turning mirror coupler is only 33% of the length of conventional
straight 2x2 MMI coupler with K=0.15. (3) The circumference of the curve waveguide in this
ring resonator is decreased by 50%. (4) The characterization of the InP-based single ring
resonator incorporating 2x2 multimode-waveguide turning mirror couplers with K= 0.15 has
a free spectral range of 82 GHz, a contrast of 4 dB, and a full-width at half-maximum
(FWHM) of 0.24 nm for the drop port. (5) This single resonators in
In0.53Ga0.47As/In0.53Ga0.26Al0.21As grown by molecular beam epitaxy (MBE), and
In0.67Ga0.33As0.6P0.4/In0.71Ga0.29As0.74P0.26 grown by metal organic chemical vapor deposition
(MOCVD) have been demonstrated, respectively.
We have also developed quantum well intermixing technique for the photonic
integration. (1) Argon plasma bombardment followed by rapid thermal annealing for
InGaAs/InGaAlAs multiple-quantum-well structures grown by MBE has been found to
strongly enhance the intensity of room-temperature photoluminescence signal by more than
an order of magnitude. The strength of the photoluminescence signal is found to be dependent
on the plasma RF power and bombardment time. The resulting blue shift of the
photoluminescence wavelength due to quantum well intermixing is found to be under 15 nm.
(2) Process combining inductively-coupled-plasma reactive ion etching (ICP-RIE) and SiO2
sputtering film has been investigated for the InGaAsP and InGaAlAs multi-quantum wells
(MQWs). Optimal distance is of 300 nm for InGaAsP, and of 200-nm-thick for InGaAlAs
between MQWs and the upper cladding by ICP-RIE and bombardment. The process resulted
in a bandgap blue-shift of 90 nm for InGaAsP, and of 60 nm for InGaAlAs. The result is very
useful to regrown, the sacrificing layer and to integrate the fabrication.
I Introduction 1
1.1 Optical filters 1
1.2 Ring device applications 4
1.3 Motivation 5
1.4 Outline of the thesis 7
Reference 7

II Design of Multimode Waveguide Turning Mirror Couplers
--- Analysis, Simulation and Model 9
2.1 Introduction 9
2.2 Analysis of Coupled Ring Resonators with MMI couplers 10
2.2.1 The transfer functions of a symmetric directional coupler 11
2.2.2 The transfer functions of MMI couplers 13
2.2.3 Curved waveguide 16
2.2.4 Transfer functions for a double racetrack 19
2.2.5 Transfer functions for a triple racetrack 20
2.3 Simulation and Model 21
2.3.1 1x1 MMI waveguides of 4.4 μm-wide and 5 μm-wide model 21
2.3.2 90-degree MMI waveguide crossing and turning mirror model 23
2.3.3 60-degree MMI waveguide crossing and turning mirror model 24
2.3.4 2x2 multimode waveguide turning mirror couplers 25
Reference 32
III The Material System and Fabrication 35
3.1 The Material of InGaAlAs 35
3.1.1 The advantage of InGaAlAs 35
3.1.2 Compressively Strained QWs 37
3.1.3 N-type modulation doping 38
3.2 SOA’s QW 39
3.2.1 TE-polarized laser 39
3.2.2 p-i-n laser 41
3.3 The fabrication of ridge waveguide --- wet etching 46
3.3.1 Multi-step wet etch method 46
3.3.2 Multi-step Undercutting Process 49
3.3.3 Planarization and metal process 51
3.4 The fabrication of the waveguides ----dry etching 52
3.4.1 The curved waveguide 55
3.4.2 The process of the fabricated waveguide 59
3.5 Multimode interference turning mirror coupler 65
3.5.1 The fabrication of MMI waveguide crossing and turning mirror 65
3.6 Ring resonator with MMI turning mirrors 66
3.6.1 Single ring device with MMI turning mirrors in InGaAsP material 67
Reference 70


IV Experimental results and Discussion 72
4.1 PL and EL measurement 72
4.2 Active devices 73
4.3 Passive devices 74
4.3.1 Curved waveguides loss 74
4.3.2 1x1 MMI waveguides of 4.4 μm-wide and 5 μm-wide pattern 79
4.3.3 90-degree MMI waveguide crossing and turning mirror pattern 80
4.3.4 60-degree MMI waveguide crossing and turning mirror pattern 81
4.3.5 2x2 90-degree MMI waveguide turning mirror pattern 82
4.3.6 Experimental results with single ring device in InGaAs material 83
4.3.7 Experimental results with single ring device in InGaAsP material 84
Reference 87

V Summary 88


APPENDIX - A
Quantum Well Intermixing Technique 92
A.1 Introduction 92
A.2 Argon plasma induced photoluminescence enhancement 95
A.2.1 Experimental Results 96
A.3 Argon Plasma Bombardment and SiO2 Sputtering Deposition 99
A.2.1 Experimental results 101
Reference 110

Publication List 112


List of Tables

TABLE 2.1 The layer sequence of the devices 21
TABLE 2.2 MMI lengths for three split ratios, w=2.2
Reference
[1.1] J. H. Marsh, O. P. Kowalski, S. D. Macdougall, B. C. Qiu, A. Mckee, C. J. Hamilton,
R. M. De La Rue and A. C. Bryce, ”Quantum well intermixing in material system for
1.5 μm,” J. Vac. Sci. Technol., vol. A16, pp. 810-816, 1998.
[1.2] B. Moslehi, J. Goodman, M. Tur and H. Shaw, “Numberical methods for optical thin
film,” Opt. and Photon. News, pp. 23-33, 1997.
[1.3] H. Kogelnik, “Filter Response of Nonuniform Almost-Periodic Structures,” Bell
System Techn. J., vol. 55, no. 1, pp. 109–126, 1976.
[1.4] H. Macleod, Thin-film Optical Filters. New York: McGraw-Hill, 1989.
[1.5] A. Thelen, Design of Optical Interference Coatings. New York: McGraw-Hill, 1989.
[1.6] K. Wilner and A. Van den Heuvel, “Fiber-optic delay lines for microwave signal
processing,” Proc. IEEE, vol. 64, pp. 805–807, 1976.
[1.7] E. Marcatili, “Bends in Optical Dielectric Guides,” Bell System Techn. J., vol. 48, no.
7, pp. 2103–2132, 1969.
[1.8] D. Davies and G. James, “Fibre-optic tapped delay line filter employing coherent
optical processing,” Electron. Lett., vol. 20, pp. 96–97, 1984.
[1.9] K. Sasayama, M. Okuno, and K. Habara, “Coherent Optical Transversal Filter Using
Silica-Based Waveguides for High-Speed Signal Processing,” J. Lightw. Technol., vol.
9, no. 10, pp. 1225–1230, 1991.
[1.10] C. Madsen and J. Zhao, “A General Planar Waveguide Autoregressive Optical
Filter,” J. Lightw. Technol., vol. 14, no. 3, pp. 437–447, 1996.
[1.11] K. Oda, S. Suzuki, H. Takahashi, and T. Toda, “An optical FDM distribution
experiment using a high finesse waveguide-type double ring resonator,” IEEE Photon.
Technol. Lett., vol. 6, pp. 1031-1034, Aug. 1994.
[1.12] R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator
filter for optical systems,” IEEE Photon. Technol. Lett., vol. 7, pp. 1447-1449, Dec.
1995.
[1.13] L.B. Soldano and E.C. M. Pennings, “Optical Multi-mode Interference Device
Based on Self-Imaging:Principle and Application,” IEEE Journal of lightwave technol.,
vol.13, pp.615-627, April 1995
[1.14] Pierre A. Besse, Emilio Gini, Maurus Bachmann, and Hans Melchior “New 2X2 and
1X3 Multimode Interference Couplers with Free Selection of Power Splitting Ratios”
IEEE Journal of lightwave technol., vol.14, pp.2286-2293, Oc t. 1996
[1.15] D.G. Rabus and M. Hamacher, “MMI-Coupled Ring Resonators in GaInAsP-InP,”
IEEE Phonton. Technol. Lett., vol. 13, pp.812-814, August 2001.
[1.16] D.G. Rabus , M. Hamacher, U. Troppenz, and H. Heidrich, “Optical Filters Based on
Ring Resonators With Integrated Semiconductor Optical Amplifiers in GaInAsP-InP”
IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp.1405-1411, Nov.
2002.
[1.17] P. K. Bhattacharya, “Semiconductor Optoelectronic Devices”, Englewood Cliffs,
Prentice Hall, NJ, 1998.
[1.18] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, Van New York, Nostrand
Reinhold, 1993.
[1.19] J. J. Coleman, R. M. Lammert, M. L. Osowski and A. M. Jones, “Progress in
InGaAs-GaAs selective-area MOCVD toward photonic integrated circuits”, IEEE J.
Selected Topics in Quantum Electronics, vol. 3, pp. 874-884, Jun. 1997.
[1.20] S. Charbonneau, E. Koteles, P. Poole, J. He, J. Haysom, M. Buchanan, Y. Feng, A.
Delage, M. Davies, R. Goldberg, P. Piva, and I. Mitchell, “Photonic integrated circuits
fabrication using ion implantation”, IEEE J. Selected Topics Quantum Electronics, vol.
4, pp. 772-793, July 1998.
[1.21] N. Cao, B. B. Elenkrigg, J. G. Simmos and D. A. Thompson, “Band-gap blue shift by
impurity free vacancu diffusion in strained multiple quantum well laser structure”,
Appl. Phys. Lett., vol. 70, pp. 3419-3421, Jun. 1997.
[1.22] B. C. Qiu, X. F. Liu, M. L. Ke, H. K. Lee, A. C. Bryce, J. S. Aitchison, J. H. Marsh,
and C. B. Button, “Monolithic Fabrication of 2X2 Crosspoint Switches in
InGaAs-InAlGaAs Multiple Quantum Wells Using Quantum-Well Intermixing,” IEEE
Photon. Technol. Lett., vol.13, pp.1292-1294, Dec. 2001.
[2.1] L. B. Soldano and E. C. M. Pennings, “Optical Multi-mode Interference Device
Based on Self-Imaging:Principle and Application,” IEEE Journal of Lightwave
Technol., vol.13, pp.615-627, April 1995.
[2.2] M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode
interference couplers with a reduced number of self-images for uniform and
nonuniform power splitting,” Applied Optics., vol.34, pp.6898-6910, Oct. 1995.
[2.3] Pierre A. Besse, Emilio Gini, Maurus Bachmann, and Hans Melchior, “New 2X2 and
1X3 Multimode Interference Couplers with Free Selection of Power Splitting Ratios,”
IEEE Journal of Lightwave Technol., vol.14, pp.2286-2293, Oct. 1996.
[2.4] A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel and F. Hernandez-Gil,
“Useful Formulas for Multimode Interference Power Splitter/Combiner Design,”
IEEE Photon. Technol. Lett., vol. 5, pp.1224-1227, October 1993.
[2.5] J. E. Zucker, K. L. Jones, T. H. Chiu, B. Tell, and K. Brown-Goebeler,
“Polarization-independent electro-optic waveguide switch using strained InGaAs/InP
quantum wells,” in Integrated Photon. Resear. (IPR’92), postdeadline Papaers, pp.
21-42, New Orleans, Louisiana, April 13-16, 1992.
[2.6] M. Bachmann, M. K. Smit, P. A. Besse, E. Gini, H. Melchior, and L. B. Soldano,
“Polarization-insensitive low-voltage optical waveguide switch using InGaAs/InP
four-port Mach-Zehnder interferometer,” in OFC/IOOC’93 Tech. Digest, vol. 4, San
Jose, California, pp. 32-33, Feb. 21-26 b1993.
[2.7] D. G. Rabus and M. Hamacher, “MMI-Coupled Ring Resonators in GaInAsP-InP,”
IEEE Phonton. Technol. Lett., vol. 13, pp.812-814, August 2001.
[2.8] D. G. Rabus , M. Hamacher, U. Troppenz, and H. Heidrich, “Optical Filters Based on
Ring Resonators With Integrated Semiconductor Optical Amplifiers in
GaInAsP-InP,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8,
pp.1405-1411, Nov. 2002.
[2.9] L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, I. Moerman, and M. K. Smit,
“Extremely Small Multimode Interference Couplers and Ultrashort Bends on InP by
Deep Etching,” IEEE Phonton. Technol. Lett., vol. 6, pp.1008-1010, August 1994.
[2.10] U. Troppenz, M. Hamacher, D. G. Rabus and H. Heidrich, “All-active GaInAsP/InP
ring cavities for widespread functionalities in the wavelength domain,” in Proc. Int.
Conf. Indium Phosphide and Related Materials(IPRM”02), Stockholm, Sweden,
pp.475-478, May 2002.
[2.11] B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled
lasers,” IEEE Photon. Technol. Lett., vol. 14, pp.600-602, May 2002.
[2.12] Yamaguchi and Kokubun, “Spot size convertor by overlapping of two tapered
waveguides,” Electronics Lett., vol. 25, pp.128-130, Jan. 1989.
[2.13] D. G. Yu and E. L. Hu, “Radical beam ion-beam etching of InAlAs/InP using Cl2,” J.
Vac. Sci. Technol. B, vol.12, pp.3378-3381, Nov./Dec. 1994.
[2.14] Sean L. Rommel, Jae-Hyung Jang, Wu Lu, Gabriel Cueva, Ling Zhou, Gary Pajer,
Ralph Whaley, Allen Lepore, Zane Schellanbarger, and Joseph H. Abeles, “Effect of
H2 on the etch profile of InP/In GaAsP alloys in Cl2/Ar/ H2 inductively coupled
plasma reactive ion etching chemistries for photonic device fabrication,” J. Vac. Sci.
Technol. B, vol.20, pp.1327-1330, Jul./Aug. 2002.
[2.15] L. S. Yu, Q. Z. Liu, S.A. Pappert, P. K. L.Yu, and S. S. Lau, “Laser spectral linewidth
dependence on waveguide loss measurements using the Fabry-Perot method,” Appl.
Phy. Lett., vol. 64, pp. 536-538, Jan. 1994
[2.16] Kostadin D. Djordjev, Chao-Kun Lin, Jintian Zhu, David Bour, and Michael R. Tan,
“Fold-Cavity Resonators as Key Elements for Optical Filtering and Low-Voltage
Electroabsorption Modulation,” IEEE Journal of Lightwave Technol., vol. 24,
pp.3464-3470, September 2006.
[2.17] K. Oda, S. Suzuki, H. Takahashi, and T. Toda, “An optical FDM distribution
experiment using a high finesse waveguide-type double ring resonator,” IEEE Photon.
Technol. Lett., vol. 6, pp. 1031-1034, Aug. 1994.
[2.18] R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator
filter for optical systems,” IEEE Photon. Technol. Lett., vol. 7, pp. 1447-1449, Dec.
1995.
[2.19] P. K. Bhattacharya, “Semiconductor Optoelectronic Devices”, Englewood Cliffs,
Prentice Hall, NJ, 1998.
[2.20] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers”, Van New York, Nostrand
Reinhold, 1993.
[2.21] J. J. Coleman, R. M. Lammert, M. L. Osowski and A. M. Jones, “Progress in
InGaAs-GaAs selective-area MOCVD toward photonic integrated circuits”, IEEE J.
Selected Topics in Quantum Electronics, vol. 3, pp. 874-884, Jun. 1997.
[2.22] S. Charbonneau, E. Koteles, P. Poole, J. He, J. Haysom, M. Buchanan, Y. Feng, A.
Delage, M. Davies, R. Goldberg, P. Piva, and I. Mitchell, “Photonic integrated
circuits fabrication using ion implantation”, IEEE J. Selected Topics Quantum
Electronics, vol. 4, pp. 772-793, July 1998.
[2.23] N. Cao, B. B. Elenkrigg, J. G. Simmos and D. A. Thompson, “Band-gap blue shift by
impurity free vacancu diffusion in strained multiple quantum well laser structure”,
Appl. Phys. Lett., vol. 70, pp. 3419-3421, Jun. 1997.
[2.24] B. C. Qiu, X. F. Liu, M. L. Ke, H. K. Lee, A. C. Bryce, J. S. Aitchison, J. H. Marsh,
and C. B. Button, “Monolithic Fabrication of 2X2 Crosspoint Switches in
InGaAs-InAlGaAs Multiple Quantum Wells Using Quantum-Well Intermixing,”
IEEE Photon. Technol. Lett., vol.13, pp.1292-1294, Dec. 2001.
[2.25] Pierre A. Besse, Maurus Bachmann, H. Melchior, L. B. Soldano, and L. B. Smit,
“Optical bandwidth and fabrication tolerances of multimode interference couplers,” J.
Lightwave Technol., vol. 12, pp.1004-1009, June 1994
[2.26] L. Caruso and I. Montrosset, “Analysis of a racetrack microring resonator with MMI
coupler,” J. Lightwave Technol., vol. 21, pp.206-210, Jan. 2003.
[2.27] Mee-Koy Chin, Chenglin Xu, and Weiping Huang, “Theoretical approach to a
polarization-insensitive single-mode microring resonator,” IEEE Optics Express ,vol.
12, pp.3245-3250, July 2004.
[2.28] V. M. Menon, W. Tong, and S.R. Forrest, “Control of quality factor and critical
coupling in microring resonators through integration of a semiconductor optical
amplifier,” IEEE Photon. Technol. Lett., vol. 16, pp. 1343-1345, May 2004.
[2.29] B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled
lasers”, IEEE Photon. Technol. Lett., vol. 14, pp.600-602, May 2002.
[3.1] M. N. Khan, J. E. Zucker, T. Y. Chang, N. J. Sauer, M. D. Divino, T. L. Coch, C. A.
Burrus, and H. M. Presby, “Design and Demonstration of Weighted-Coupling
InGaAs/InGaAlAs Electron Transfer Waveguides,” J. Lightwave Technology, vol. 12,
pp. 2032-2039, 1994.
[3.2] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and Experiment of
In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well
Lasers,” IEEE J. Quantum Electron., vol. 35, pp. 771-782, 1999.
[3.3] J. C. L. Yong, J. M. Rorison, and I. H. White, “1.3-μm Quantum-Well InGaAsP,
AlGaInAs, and InGaAsN Laser Material Gain: A Theoretical Study,” IEEE J.
Quantum Electron., vol. 38, pp. 1553-1564, 2002.
[3.4] L. A. Coldren and S. W. Corzine: Diode Laser and Photonic Integrated Circuits, (John
Wiley & Sons, New York, 1995), P. 137.
[3.5] H. Haug and S. W. Koch: Quantum theory of the optical and electronic properties of
semiconductors, (World Scientific, Singapore, 1994) 3rd ed., p.250.
[3.6] A. Yariv: Optical Electronics in Modern Communications, (Oxford University Press,
Oxford, 1997) 5th ed., p. 328.
[3.7] J. E. Zucker, T. Y. Chang, M. Wegener, N. J. Sauer, K. L. Jones, and D. S. Chemla,
“Large refractive index changes in tunable-electron-density InGaAs/InAlAs quantum
wells,” IEEE Photonics Technol. Lett., vol. 2, pp. 29-31, 1990.
[3.8] T. Mukai, Y. Yamamoto and T. Kimura: Semiconductors and Semimetals, ed. W. T.
Tsang (Academic Press, New York, 1985) Vol. 22, Part E.
[3.9] K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous
noise enhancement factor in quantum well amplifiers and lasers studied by simple
analytical expressions,” Appl. Phys. Lett., vol. 52, pp.1945-1947, 1988.
[3.10] A. Niwa, T. Ohtoshi, K. Uomi, and K. Nakahara, “Doping-type dependence of turn-on
delay time in 1.3 μm InGaAsP-InP modulation-doped strained quantum-well lasers,”
IEEE Photon. Technol. Lett., vol. 8, pp. 328-330, 1996.
[3.11] M. J. Mondry, D. I. Babic, J. E. Bowers, and L. A. Coldern, “Refractive index of (Al,
Ga, In)As Epilayers on InP for optoelectronic applications”, IEEE Photon. Technol.
Lett., vol. 4, pp. 627-630, 1992.
[3.12] S. Nojima and H. Asahi, “Refractive index of InGaAs/InAlAs multi-quantum-well
layers grown by molecular beam epitaxy”, J. Appl. Phys., vol. 63, pp. 479-483, 1998.
[3.13] P. Martin, E. M. Skour, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate
refractive index measurement of doped and undoped InP by a grating coupling
technique”, Appl. Phys. Lett., vol. 67, pp. 881-883, 1995.
[3.14] P. K. Bhattacharya, “Semiconductor Optoelectronic Devices”, Englewood Cliffs,
Prentice Hall, NJ, 1998.
[3.15] L. Spiekman: Compact Integrated Optical Components for Telecommunication
Network, Ph.D. Thesis, Delft University of Technology, ISBN 90-9009718-X, 1996.
[3.16] M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode
microring resonators” IEEE J. Lightwave Technol., vol. 16, no. 8, pp.1433-1446,
August 1998.
[3.17] D. L. Lee: Electromagnetic Principle of Integrated Optics, John Wiley, New York, pp.
128-142, 1986.
[3.18] D. Marcuse Light Transmission Optics, Van Nostrand Reinhold, New York, pp.
398-406, 1972.
[3.19] V. Subramaniam et al., “Measuement of mode field profiles and bending and
transition losses in curved optical channel waveguides,” IEEE J. Lightwave Technol.,
vol. 15, no. 6, pp. 990-997, June 1997.
[3.20] E. G. Neumann, “Low loss dielectric optical waveguide bends,” Fiber and Integr.
Optical, vol. 4, no. 2, pp. 203-211, 1982.
[3.21] L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, I. Moerman, and M. K. Smit
“Extremely small multimode interference couplers and ultrashort bends on InP by deep
Etching,” IEEE Photon. Technol. Lett., vol. 6, pp.1008-1010, August 1994.
[3.22] Lucas B. Soldano and Erik C. M. Pennings, “Optical Multi-mode Interference Device
Based on Self-Imaging:Principle and Application,” IEEE Journal of Lightwave
Technol., vol.13, pp.615-627, April 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔