(3.236.214.19) 您好!臺灣時間:2021/05/10 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴志明
研究生(外文):Chih-ming Lai
論文名稱:摩擦攪拌添加奈米氧化鋁對超細晶鋁合金加工硬化行為的探討
論文名稱(外文):Work hardening behavior of ultra fine grained commercially aluminum alloy containing nanoscale alumina dispersoids produced by friction stir processing
指導教授:何扭今何扭今引用關係
指導教授(外文):Ho New-Jin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:88
中文關鍵詞:摩擦攪拌添加奈米氧化鋁對超細晶鋁合金
外文關鍵詞:friction stir processing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗對不同重量百分比組成的鋁和氧化鋁粉末及鋅粉末進行摩擦攪拌,得到鋁氧化鋁複合材料與鋁鋅合金。利用萬能試驗機來量測攪拌區的機械性質,用掃描式電子顯微鏡、穿透式電子顯微鏡和X-ray繞射儀觀察攪拌區的微結構和組成相。實驗條件固定走速為0.5mm/s,轉速分別為500rpm、550 rpm、700rpm、1500rpm與1500 rpm所製成的試片再做熱處理實驗。此外選用不同尺寸的工具頭大小(凸銷及肩部構成)搭配不同轉速去得到細晶尺寸材料,以進一步了解晶粒尺寸對鋁氧化鋁複合材料與鋁鋅合金經摩擦攪拌製程後的實驗結果。
本實驗藉由摩擦攪拌製程來使添加的氧化鋁可以均勻分布在鋁基材內,進而提升複合材料的機械強度,同時藉由分散率良好的氧化鋁顆粒來阻止差排移動使其在晶粒內部糾結而產生加工硬化行為進而提升細晶材料的均勻延展性。還可利用不同的實驗參數去得到不同的超細晶晶粒尺寸,去觀察晶粒相異尺寸對於加工硬化行為的影響程度。此外經摩擦攪拌製程後鋅會固溶到鋁基材內部,且製成的鋁鋅合金有不錯的延展性。添加越多含量的鋅(5wt.%-10wt.%-15wt%)對於不同晶粒尺寸的細晶(0.4μm-2μm)其延展性增幅效果會更加明顯。
Al-Al2O3 precipitated alloys and Al-Zn solid solution alloys fabricated by friction stir process are investigated in this study.
The mechanical specimen cutting from stir zone were tested by Instron machine. Micro-structure was observed by Scanning Electron Microscopy and Transmission Electron Microscopy. Phase composition was measured by X-ray diffraction. Different Grain sizes sample were obtained at condition with constant traverse speed of 1.0mm/s, different RPM(500rpm, 550rpm, 700rpm, 1500rpm and 1500rpm with subsequent annealing treatment) and pin shape. Mechanical properties and ductility improvement on grain size effect are discussed in this research.
In Al/Al2O3 composite materials, mechanical strength is enhanced by Al2O3 precipitation distributed homogeneously in Al matrix and ductility is improved simultaneously by increment of work hardening rate due to interaction between obstacles and dislocations.
In Al-Zn solid solution alloys, ductility enhancement takes place not only in refining grain sizes but also occurs obviously with different weight fraction of Zn addition.
總目錄
論文摘要……………………………………………………………………...I
總目錄 III
表目錄 VI
圖目錄 VII

論文摘要: I
第一章 前言 1
1.1 背景說明 1
1.2 研究動機及目的 4
第二章 文獻回顧 5
2.1利用摩擦攪拌製程來製造超細晶粒材料 5
2.1.1摩擦攪拌製程 5
2.1.2摩擦攪拌製程晶粒尺寸 6
2.2 Al-Zn合金之基本性質 6
2.2.1 Al-Zn合金之機械性質 7
2.3金屬基複合材料的機械性質 8
2.3.1由細顆粒之強化 8
2.3.2 Orowan強化和散佈強化 9
2.3.3加工強化 10
2.3.4晶界強化 11
第三章 實驗方法 13
3.1實驗材料成分與製備 13
3.1.1 微米級鋁粉及奈米級氧化鋁粉 13
3.1.2 實驗塊材製作 13
3.2 摩擦攪拌製程 14
3.2.1 工具頭及夾具 14
3.2.2 摩擦攪拌製程機器簡介 14
3.3 巨觀結構與微觀組織分析 14
3.3.1掃瞄式電子顯微鏡觀察試片的晶粒大小 14
3.3.2穿透式電子顯微鏡觀察試片的晶粒大小 15
3.3.3 X光繞射分析 15
3.4 機械性質量測 15
3.4.1 拉伸試驗 15
第四章 實驗結果與討論 16
4.1 晶粒大小 16
4.2 X光繞射分析 17
4.3 拉伸性質量測 17
4.3.1 應力應變 17
4.3.2 Grain尺度與Hall-Petch關係 20
4.3.3 Grain尺度與均勻延展性及總伸長率的關係 21
4.3.4固溶強化機制與散佈強化之機械性質比較 22
第五章 結論 23
第六章 參考文獻 25
第七章 表 29
第八章 圖 38
第六章 參考文獻

1.Birringer R. "Nanocrystalline materials.", Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 117. (1-2), 33-43.
2.Arzt E. "Size effects in materials due to microstructural and dimensional constraints: A comparative review.", Acta Materialia, 1998, 46. (16), 5611-5626.
3.Gleiter H. "Nanostructured materials: basic concepts and microstructure.", Acta Materialia, 2000, 48.(1), 1-29.
4.Kumar K. S., Van Swygenhoven H. and Suresh S. "Mechanical behavior of nanocrystalline metals and alloys.", Acta Materialia, 2003, 51.(19), 5743-5774.
5.Lee S., Yoon C. Y., Park H. J., et al. "A study of hydrostatic extrusion as a consolidation process for fabricating ultrafine-grained bulk Al–Mg alloy.", Journal of Materials Processing Technology, 2007, 191.(1-3), 396-399.
6.Azushima A., Kopp R., Korhonen A., et al. "Severe plastic deformation (SPD) processes for metals.", CIRP Annals - Manufacturing Technology, 2008, 57.(2), 716-735.
7.Orlov D., Todaka Y., Umemoto M., et al. "Role of strain reversal in grain refinement by severe plastic deformation.", Materials Science and Engineering A , 2009, 499.(1-2), 427-433.
8.Gleiter H. "On the structure of grain boundaries in metals.", NATO Conference Series, (Series) 6: Materials Science, 1983, 5, 433-464.
9.Thompson and W. A. A. "Yielding in nickle as a function of grain or cell size.", Acta Materialia, 1975, 23.(11), 1337-1342.

10.Yu C. Y., Kao P. W. and Chang C. P. "Transition of tensile deformation behaviors in ultrafine-grained aluminum.", Acta Materialia, 2005, 53.(15), 4019-4028.
11.Yu C. Y., Sun P. L., Kao P. W., et al. "Mechanical properties of submicron-grained aluminum.", Scripta Materialia, 2005 , 52.(5), 359-363.
12.Morrison W. B. and Miller R. L. "The ductility of the ultrafine-grain alloys,ultrafine grain metals."ed Burke J.J., V. Weis. 1970.
13.Koch C. C. "Optimization of strength and ductility in nanocrystalline and ultrafine grained metals.", Scripta Materialia, 2003, 49.(7), 657-662.
14.Meyers M. A., Mishra A. and Benson D. J. "Mechanical properties of nanocrystalline materials.", Progress in Materials Science, 2006, 51.(4), 427-556.
15.Wang Y., Chen M., Zhou F., et al. "High tensile ductility in a nanostructured metal.", Nature, 2002, 419, 912-915.
16.Jin H. and Lloyd D. J. "Effect of a duplex grain size on the tensile ductility of an ultra-fine grained Al-Mg alloy, AA5754, produced by asymmetric rolling and annealing.", Scripta Materialia, 2004, 50.(10), 1319-1323.
17.Wang Y. M. and M. E. "Three strategies to achieve uniform tensile deformation in a nanostructured metal.", Acta Materialia, 2004, 52.(14), 4259-4271.
18.Youssef K. M., Scattergood R. O., Murty K. L., et al. "Ultratough nanocrystalline copper with a narrow grain size distribution.", Applied Physis Letters, 2004, 85.(6), 929-931.
19.Cheng S., Ma E., Wang Y. M., et al. "Tensile properties of in situ consolidated nanocrystalline Cu.", Acta Materialia, 2005, 53.(5), 1521-1533.
20.Zhang X., Wang H., Scattergood R. O., et al. "Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn.", Acta Materialia, 2002, 50, 4823-4830.


21.Zhang X., Wang H., Scattergood R. O., et al. "Tensile elongation 110% observed in ultrafine-grained Zn at room temperature.", Applied Physis Letter, 2002, 81.(5), 823-825.
22.Zhao Y. H., Zhu Y. T., Liao X. Z., et al. "Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy.", Applied Physis Lletter , 2006, 89.(12), 121906.
23.Horita Z., Ohashi K., Fujita T., et al. "Achieving high strength and high ductility in precipitation-hardened alloys."Adv Mater. 2005.17.(13). 1599-1602
24.Zhao Y. H., Liao X. Z., Cheng S., et al. "Simultaneously increasing the ductility and strength of nanostructured alloys.", Advanced Materials, 2003, 18, 2280-2283.
25.Cheng S., Zhao Y. H., Zhu Y. T., et al. "Optimizing the strength and ductility of fine structured 2024 al alloy by nano-precipitation.", Advanced Materials 2007, 55.(17), 5822-5832.
26.Cheng Y. S. "Studies of Mechanical Properties of Nanoscaled Al2O3 ParticulateReinforced 1050 Alloy using Friction Stir Process.", Sun Yat-Sen University Papers, 2005.
27.Mishra R. S. and Mahoney M. W. "Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys.", Materials Science Forum, 2001, 357-359, 507-514.
28.Mishra R. S. and Ma Z. Y. "Friction stir welding and processing.", Materials Science and Engineering R: Reports, 2005, 50.(1-2), 78.
29.Sung C. T. "On study of in-situ chemical reaction in aluminum-zinc oxides composites during friction stir processing.", Sun Yat-Sen University Papers, 2007.
30.Chen Y. L. "Studies of grain evolution in 1050 aluminum alloy during friction stir process.", Sun Yat-Sen University Papers, 2007.
31.Kubaschewski O. and Alcock C. B. "Metallurgical Thermochemistry fifth ed. .", vol. 24, 1979, 378-384.
32.Loffler H. "Structure and Structure Development of Al-Zn Alloys.", Akad. Verl, 1995.
33.H.Neuhauser and C.Schwink "Solid Solution Strengthening.", Materials Science & Technology, 1993, 6, 191.
34.Miller W. S. and Humphreys F. J. "Strengthening mechanisms in particulate metal matrix composites.", Scripta Metallurgica et Materialia, 1991, 25.(1), 33-38.
35.R.W.K.Homeycombe "The Plastic Deformation of Metals ", 2nd edition Edward Arnold, 1984.
36.Kamat S. V., Hirth J. P. and Rollett A. D. "Plastic deformation in al-alloy matrix-alumina particulate composites.", Scripta Metallurgica et Materialia, 1991, 25.(1), 27-32.
37.Hu C. M., Lai C. M., Du X. H., et al. "Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process.", Scripta Materialia, 2008, 59.(11), 1163-1166.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔