|
[1.1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967). [1.2] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 504 (1981) [1.3] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002). [1.4] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996). [1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, 16, 22 (2000). [1.6] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988). [1.7] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995). [1.8] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., 18, 278 (1997). [1.9] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998). [1.10] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O''Connell, R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable nondestructive read-only storage device,” presented at the Internat''l Electron Devices Meeting, 1967 [1.11] Y. Yang and M. H. Write, “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Trans. Comp. Packag., Manufact. Tech., 20, 190 (1997). [1.12] A. Kanjilal, J. L. Hansen, P. Gaiduk, A. N. Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos, and D. Tsoukalas, “Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy,” Appl. Phys. Lett. 82, 1212 (2003). [1.13] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si Ge,” IEEE IEDM Tech. Dig., 115-118 (1998). [1.14] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson,” Oxidation studies of SiGe” J. Appl. Phys., 65, 1724 (1989). [1.15] J. Eugene, F. K. LeGoues, V. P. Kesan, S. S. Iyer, and F. M. d’Heurle,” Diffusion versus oxidation rates in silicon-germanium alloys” Appl. Phys. Lett., 59, 78 (1991). [1.16] V. Craciun, I. W. Boyd, A. H. Reader, and E. W. Vandenhoudt, “Low temperature synthesis of Ge nanocrystals in SiO2,” Appl. Phys. Lett. 65, 3233 (1994). [1.17] V. Craciun, I. W. Boyd, A. H. Reader, W. J. Kersten, F. J. G. Hakkens, P. H. Oosting, and S. E. W. Vandenhoudt,” Microstructure of oxidized layers formed by the low-temperature ultraviolet-assisted dry oxidation of strained Si0.8Ge0.2 layers on Si” J. Appl. Phys., 75, 1972 (1994). [1.18] M. Mukhopadhyay, S. K. Ray, C. K. Maiti, D. K. Nayak, and Y. Shiraki,” Properties of SiGe oxides grown in a microwave oxygen plasma” J. Appl. Phys., 78, 6135 (1995). [1.19] J. M. Madsen, Z. Cui, and C. G. Takoudis,” Low temperature oxidation of SiGe in ozone: Ultrathin oxides” J. Appl. Phys., 87, 2046 (2000). [1.20] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang,” Effects of Ge concentration on SiGe oxidation behavior” Appl. Phys. Lett., 59, 1200 (1991). [1.21] F. K. LeGoues, R. Rosenberg, and B. S. Meyerson, ” Dopant redistribution during oxidation of SiGe” Appl. Phys. Lett., 54, 751 (1989). [1.22] O. Vancauwenberghe, O. C. Hellman, N. Herbots, and W. J. Tan,” New SiGe dielectrics grown at room temperature by low-energy ion beam oxidation and nitridation”, Appl. Phys, Lett., 59, 2031 (1991). [1.23] C. Tetelin, X. Wallart, J. P. Nys, L. Vescan, and D. J. Gravesteijn, “Kinetics and mechanism of low temperature atomic oxygen-assisted oxidation of SiGe layers”, J. Appl. Phys., 83, 2842 (1998). [1.24] F. K. LeGoues, R. Rosenberg, and B. S. Meyerson, “Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation”, Appl. Phys. Lett., 54, 644 (1989). [1.25] M. Seck, R. A. B. Devine, C. Hernandez, Y. Campidelli, and J. C. Dupuy,” Study of Ge bonding and distribution in plasma oxides of Si1-xGex alloys” Appl. Phys. Lett., 72, 2748 (1998). [1.26] A. Terrasi, S. Scalese, R. Adorno, E. Ferlito, M. Spadafora, and E. Rimini, ”Rapid thermal oxidation of epitaxial SiGe thin films ” Materials Science and Engineering, B89, 269 (2002). [1.27] I. G. Kim, H. S. Kim, J. H. Lee, and H. C. Shin,” Silicon nano-crystal. memory with tunneling nitride,”” Ext. Abst. SSDM, 1998, p. 170. [1.28]I. G. Kim, S. Y. Han, H. S. Kim, J. H. Lee, B. H. Choi, S. W. Hwang, D. Y. Ahn, and H. C. Shin,” Room temperature single electron effects in Si quantum dot memory with oxide-nitride tunneling dielectrics” IEEE Int. Electron Devices Meeting Tech. Dig., 1998, p. 111. [1.29] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories-part I. Device design and fabrication”, IEEE Trans. Electron Devices, 49, 1606 (2002). [1.30] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories-part II: electrical characteristics”, IEEE Trans. Electron Devices, 49, 1614 (2002). [1.31] J De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol, 2002. [1.32] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEEE Trans. Electron Devices 49, 1392 (2002). [1.33] Y. C. King, T. J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-xGex”, IEEE Trans. Electron Devices 48, 696 (2001) [1.34] Y. Shi et al., in Proceedings of the First Joint Symposium on Opto- and Microelectronic Devices and Circuits, 2000, pp. 142–145. [1.35] H. G. Yang, Y. Shi, S. L. Gu, B. Shen, P. Han, R. Zhang, and Y. D. Zhang, “Numerical investigation of characteristics of p-channel Ge/Si hetero-nanocrystal memory”, Microelectron. J., 34, 71 (2003). [1.36] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication”, IEEE Trans. Electron Devices, VOL. 49, NO. 9, SEPTEMBER 2002. [1.37] Chungho Lee, Udayan Ganguly, Venkat Narayanan, and Tuo-Hung Hou, “Asymmetric Electric Field Enhancement in Nanocrystal Memories”, IEEE Eelectron Electron Letters, vol. 26, NO. 12, DECEMBER 2005. [1.38] Jong Jin Leea, Yoshinao Harada Jung, Woo Pyun, and Dim-Lee Kwong “Nickel nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications”, Applied Physics Letters 86, 103505 (2005) [1.39] W. R. Chen, T. C. Chang, P. T. Liu, P. S. Lin, C. H. Tu, and C. Y. Chang “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application”, Applied Physics Letters 90, 112108 (2007) [1.40] S. K. Samanta, Won Jong Yoo, and Ganesh Samudra, “Tungsten nanocrystals embedded in high-k materials for memory application”, Applied Physics Letters , 87, 113110 (2005) [1.41] S. K. Samanta, P. K. Singh, Won Jong Yoo, Ganesh Samudra, and Yee-Chia Yeo, “Enhancement of Memory Window in Short Channel Non-Volatile Memory Devices Using Double Layer Tungsten Nanocrystals”, IEEE Electron Device Letter, (2005) [1.42]Shan Tang, Chuanbin Mao, Yueran Liu, and Sanjay K. Banerjee “Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication”, IEEE Trans. on Electron Letters, vol. 54, no. 3, March 2007. [1.43] L. Guo, E. Leobandung, and S. Y. Chou, “Si single-electron MOS memory with nanoscale floating-gate and narrow channel,” in Int. Electron Devices Meeting Tech. Dig., 1996, pp. 955–956. [1.44] Y. H. Lin, C. H. Chien, C. T. Lin, C. W. Chen, C. Y. Chang, and T. F. Lei, “High performance multi-bit nonvolatile HfO/sub 2/ nanocrystal memory using spinodal phase separation of hafnium silicate”, in Int. Electron Devices Meeting Tech. Dig., 2004, pp. 1080–1082. [1.45] S. M. Yang, J. J. Huang, C. H. Chien, P. J. Taeng, L. S. Lee, M. J. Tsai, and T. F. Lei, “High Charge Storage Characteristics of CeO2 Nanocrystals for Novolatile Memory Applications”, in Int. Electron Devices Meeting Tech. Dig., 2008, pp. 48–49. [1.46] N. Takahashi, H. Ishikuro, and T. Hiramoto, “A directional current switch using silicon electron transistors controlled by charge injection into silicon nano-crystal floating dots,” in Int. Electron Devices Meeting Tech. Dig., 1999, pp. 371–374. [1.47] J. Wahl, H. Silva, A. Gokirmak, A. Kumar, J. J. Welser, and S. Tiwari, “Write, erase and storage times in nanocrystal memories and the role of interface states,” in Int. Electron Devices Meeting Tech. Dig., 1999, pp. 375–378. [1.48] T.Y.Chan, K.K.Young and C.Hu, “A true single-transistor oxide- nitride-oxide EEPROM device”. IEEE Electron Device Letters, vol.8, no.3, pp.93-95, 1987. [1.49] “International Technology Roadmap for Semiconductors, 2007 update” at http://public.itrs.net/Files/2007Update/Home.pdf. [2.1] Chih-Yuan and Chin-Chieh Yeh, “Advenced Non-Volatile Memory Devices with Nano-Technology”, Invited Talk for 15th International Conference on Ion Implantation Technology, 2004. [2.2] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997) [2.3] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59. [2.4] T. Ohnakado, H. Onoda, O. Sakamoto, K. Hayashi, N. Nishioka, H. Takada, K. Sugahara, N. Ajika and S. Satoh, “Device characteristics of 0.35 m P-channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming”, IEEE Trans. Electron Devices, Vol. 46, pp. 1866-1871, 1999. [2.5] J. Bu, M. H. White, Solid-State Electronics., 45, 113 (2001) [2.6] M. L. French, M. H. White., Solid-State Electron., p.1913 (1995) [2.7] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White., IEEE Trans Comp Pack and Manu Tech part A., 17, 390 (1994) [2.8] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, IEDM Tech. Dig., p.19 (1993) [2.9] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Transactions of Electron Devices., 49, 1606 (2002) [2.10] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, (1964) [2.11] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969) [2.12] Christer Sevensson and Ingemar Lundstrom, J. Appl. Phys., 44, 4657 (1973) [2.13] P. E. Cottrell, R. R. Troutman, and T. H. Ning, IEEE J. Solid-State Circuits, 14, 442 (1979) [2.14] C. Hu, IEDM Tech. Dig., p.22. (1979) [2.15] S. Tam, P. K. Ko, C. Hu, and R. Muller, IEEE Trans. Elec. Dev., 29, 1740 (1982) [2.16] I. C. Chen, C. Kaya, and J. Paterson, IEDM Tech. Dig., p.263 (1989) [2.17] I. C Chen, D. J. Coleman, and C. W. Teng, IEEE Elec. Dev. Lett., 10, 297 (1989) [2.18] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, IEDM Tech. Dig., p.279 (1995) [2.19] Suk-Kang Sung, I1-Han Park, Chang Ju Lee, Yong Kyu Lee, Jong Duk Lee, Byung-Gook Park, Soo Doo Chae, and Chung Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices, ” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL.2, NO.4, DECEMBER 2003. [2.20] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997) [2.21] D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, “Statistical model of reliability and scaling projections for Flash memories,” in IEDM Tech. Dig., 2001, pp.32.2.1–32.2.4. [2.22] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti,“New technique for fast characterization of SILC distribution in Flash arrays,” in Proc. IRPS, 2001, pp. 73–80. [2.23] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in Flash memories after program/erase cycling,” in Proc. IRPS, 2002, pp. 1–6.[2.24] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, “Quantum confinement in germanium nanocrystals,” Applied Physics Letters, vol.77, pp.1182-1184 (2000) [2.25] T. Takagahara and K.Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect- gap materials,” Phys. Rev. B, Vol. 46, p. 15578, 1992. [2.26] J.D.Jackson, “Classcial Electrodynamics”, published by John Wiley & Sons, 1999. [3.1] C. Lee, U. Ganguly, V. Narayanan, and T. H. Hou, “Asymmetric Electric Field Enhancement in Nanocrystal Memories”, IEEE Eelectron Electron Letters, 26, 12, (2005). [3.2] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. on nanotechnology, 1, pp. 72-77 (2002) [3.3] W. R. Chen, T. C. Chang, P. T. Liu, P. S. Lin, C. H. Tu, and C. Y. Chang, “Formation of stacked Ni silicide nanocrystals for nonvolatile memory application”, Appl. Phys. Lett., 90, 112108 (2007) [3.4] M. Shalchian, J. Grisolia, G. Ben Assayag, H. Coffin, S. M. Atarodi, and A. Claverie, “Room-temperature quantum effect in silicon nanoparticles obtained by low-energy ion implantation and embedded in a nanometer scale capacitor” Appl. Phys. Lett., 86, 163111 (2005). [3.5] W. Guan, S. Long, Q. Liu, Y. Hu, Z. Li, and R. Jia, “Modeling of retention characteristics for metal and semiconductor nanocrystal memories”, Solid-State Electronics, 51, pp. 806-811 (2007) [3.7] C. Y. Ng, T. P. Chen, L. Ding, S. Fung, “Impact of programming mechanisms on the performance and reliability of nonvolatile memory devices based on Si nanocrystals”, IEEE Electron Device Lett., 27, pp. 231- 233 (2006) [3.9] D. R. Lide, CRC Handbook of Chemistry and Physics, 81st ed. (CRC,Boca Raton, FL, 2000), Vol. 81, p. 5-3. [3.10] M. C. Poon, C. H. Ho, F. Deng, S. S. Lau, and H. Wong, “Thermal stability of cobalt and nickel silicides”, Microelectronics Reliability, 38 pp. 1495-1498 (1998) [3.11] W. R. Chen, T. C. Chang, P. T. Liu, C. H. Tu, F. W. Chi, S. W. Tsao, and C. Y. Chang, “Formation of stacked nickel-silicide nanocrystals by using a co-mixed target for nonvolatile memory application”, Surface & Coatings Technology, 202 pp. 1292–1296 (2007) [3.12] T. C. Chang, S. T. Yan, P. T. Liu, C. H. Hsu, M. T. Tang , S. M. Sze, “A distributed charge storage with GeO nanodots”, Appl. Phys. Lett., 84, p.2581 (2004) [3.13] S. K. Samanta, P. K. Singh, Won Jong Yoo, G. Samudra1,Yee-Chia Yeo, L. K. Bera, and N. Balasubramanian, “Enhancement of Memory Window in Short Channel Non-Volatile Memory Devices Using Double Layer Tungsten Nanocrystals”, in IEDM Tech. Dig., pp. 170-173 (2005) [3.14 ]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories. I. Device design and fabrication”, IEEE Trans. Electron Devices, vol. 49, pp. 1606- 1613 (2002) [3.15] T. Takagahara, and K.Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, Vol. 46, p. 15578, (1992) [4.1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory”, Proceedings of the IEEE 91, 4 (2003). [4.2] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol. 1, 72 (2002). [4.3] C. Y. Lu, T. C. Lu, and R. Liu, “Non-Volatile Memory Technology-Today and Tomorrow”, Proceedings of 13th IPFA (2006). [4.4] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystalstorage”, IEDM Tech. Dig. 521 (1995). [4.5] J. H. Jung, J. Y. Jin, I. Lee, T. W. Kim, H. G. Roh, and Y. H. Kim, “Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer”, Appl. Phys. Lett., 88, 112107 (2006). [4.6] C. Lee, T. H. Hou, and E. C. C. Kan, “Nonvolatile memory with a metal nanocrystal/nitride heterogeneous floating-gate”, IEEE Trans. Electron Devices, 52, 2697 (2005). [4.7] W. R. Chen, T. C. Chang, P. T. Liu, J. L. Yeh, C. H. Tu, J. C. Lou, C. F. Yeh, and C. Y. Chang, “Nonvolatile memory characteristics of nickel-silicon-nitride nanocrystal “Appl. Phys. Lett., 91, 082103 (2007).
|