(3.238.173.209) 您好!臺灣時間:2021/05/09 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘家叡
研究生(外文):Chia-jui Pan
論文名稱:CuInSe2薄膜快速硒化製程之研究
論文名稱(外文):A study of rapid thermal selenization process of CuInSe2 films
指導教授:曾百亨曾百亨引用關係
指導教授(外文):Bae-Heng Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:慢速硒化快速硒化薄膜太陽能電池先驅物
外文關鍵詞:RTAprecursorbinaryselenization
相關次數:
  • 被引用被引用:6
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先以蒸鍍方式成長單一元素In/Cu/Se 和 In/Se/Cu 疊層之先驅物(precursor),In/Se/Cu會先形成CuSe2、CuSe和In純相,而In/Cu/Se主要是由Cu11In9合金相、In純相和非晶Se組成,RTA的硒化過程中這兩種疊層方式會以不同的反應機制化合成CuInSe2(簡稱CIS)薄膜。但這兩種方式成長出的CIS薄膜表面起伏很大且不緻密,非理想的薄膜。
所以改用共蒸鍍二元(binary) InSe/CuSe/Se和InSe/Cu/InSe/Se疊層之先驅物,結果發現RTA後之CIS的平整性、緻密性很好,其中又以InSe/CuSe/Se的疊層方式較好,平均的晶粒大小約1~3μm。此結果顯示跳過單一元素和Se結合,而產生硒化物InxSey、CuxSey(例如InSe、In2Se3、CuSe、Cu2Se等等)的這個階段,直接用In-Se、Cu-Se二元化合物疊層作RTA硒化可得到較好的結果。最後將InSe/CuSe/Se疊層成長於Mo金屬背電極上,發現CIS會在Mo薄膜上產生一圈圈表面隆起的現象,探究後認定是Mo薄膜的殘留應力(壓應力-272.9MPa)所造成的,經過改良,當CIS薄膜厚度為1μm 左右時,成長約1μm的雙層結構Mo薄膜,當其殘留應力值降為壓應力-194MPa後,解決了Mo/CIS的界面問題,而Mo薄膜應力值持續降到接近無應力1MPa或張應力709.9MPa時,卻發生CIS薄膜和Mo薄膜一起剝離的現象。
接著對以InSe/CuSe/Se疊層(Cu/In為24%/26%)形成的CIS薄膜作分析,其為P型的In-rich薄膜,片電阻為6.8*106Ω/ □,載子移動率1.103*102 cm2/V-s,載子濃度1.318*1018 cm-3,能隙值約1.0eV,吸收係數約在6.5*104cm-1以上,且薄膜各處成分比例都很接近,顯示薄膜成分組成的均勻性不錯。
By evaporating single element to grow two kinds of stacked layer precursors In/Cu/Se and In/Se/Cu first, In/Cu/Se precursor forms as CuSe2, CuSe and In metal phase, but In/Se/Cu precursor forms mainly as Cu11In9 alloy, In metal phase and amorphous Se. In RTA selenization process, the two kinds of stacked layer precursors form to CuInSe2 (for short as CIS) thin film in different reaction mechanisms, but both of the two stacked layers form to CIS with rough surface and uncompact structure, not the ideal thin film.
Replacing by co-evaporating two elements to grow two kinds of binary stacked layrer precursors InSe/CuSe/Se and InSe/Cu/InSe/Se, finds that, after the RTA selenization process, both of the two precursors form CIS with good smoothness and compactness, and InSe/CuSe/Se precursor with much better structure than the other, having mean grain size in about 1~3μm. In this result, appears that if skipping the stage which single element reacts with Se, generating the selenide InxSey, CuxSey (Such as InSe, In2Se3, CuSe, Cu2Se et cetera.), and using In-Se, Cu-Se binary stacked precursors in RTA process directly can acquire better CIS structure. And then, growing InSe/CuSe/Se stacked layer on Mo metal back contact, finds the phenomenon that the formed CIS thin film has many circle bulges structure on Mo thin film. After investigating this case, the reason was considered as the remaining compressive stress of Mo thin film (-272.9MPa). The interface problem of Mo/CIS has been solved by tuning the remaining stress of Mo with 1μm thickness to compressive stress -194MPa, and 1μm thickness CIS thin film is grown on that. However, if the remaining stress continuingly drecrese to almost no stress 1MPa or tensile stress 709.9MPa, CIS thin film peels with Mo thin film from the substrate.
In the end, analyzing the CIS thin film formed by InSe/CuSe/Se stacked layer precursor (Cu/In ratio is 24%/26%), the result shows that the CIS film is a P-type In-rich thin film, the sheet resistence is 6.8*106Ω/ □, carrier mobility is 1.103*102 cm2/V-s, carrier density is 1.318*1018 cm-3, and energy gap is about 1.0eV, the absorption coefficient is above 6.5*104cm-1, and the composition all over the film is very close to each other,appearing this film with nice composition homogenization.
摘要............................................................................................................................. III
第一章 簡介................................................................................................................. 1
1.1前言...................................................................................................................... 1
1.2太陽能電池原理介紹.......................................................................................... 2
第二章 文獻回顧與實驗目的 ..................................................................................... 3
2.1 CIS薄膜層的特性 .............................................................................................. 3
2.2 RTP快速硒化製程與慢速真空硒化製程之比較 ............................................. 6
2.3 不同疊層方式對RTP硒化的影響 ................................................................... 7
2.4 Two- step RTP硒化製程 ..................................................................................... 8
2.5 先驅物薄膜 形成Cu-In合金相的問題 ........................................................... 9
2.6 CIS和Mo的界面問題 ....................................................................................... 9
2.7 以In-Se和Cu-Se化合物為先驅物做RTP硒化 ........................................... 10
2.9以Raman 光譜檢測CIS特性 ......................................................................... 14
2.10實驗目的與動機.............................................................................................. 17
第三章 實驗製程方法與分析儀器之介紹 ............................................................... 17
3.1.鈉玻璃基板清洗過程........................................................................................ 17
3.2薄膜鍍製............................................................................................................ 18
3.2.1 CuInSe2 吸收層先驅物之鍍製 .............................................................. 18
3.2.2 CuInSe2 吸收層先驅物之RTA反應 ...................................................... 20
3.2.3 Mo金屬背電極之成長 ........................................................................... 22
3.3薄膜分析儀器.................................................................................................... 23
3.3.1 XRD(X-ray繞射儀) ................................................................................. 23
3.3.2 Raman (拉曼)光譜分析........................................................................... 24
3.3.3 SEM(掃描式電子顯微鏡) ....................................................................... 25
3.3.4 EDS(能量解析光譜儀)............................................................................ 25
3.3.5 EPMA(電子探針微區分析儀) ................................................................ 25
3.3.6 Four-point probe(四點探針) ................................................................... 26
3.3.7 Spectrophotometer (吸收光譜儀) ............................................................ 27
3.3.8 Hall measurement (霍爾量測) ................................................................. 27
第四章 實驗結果與討論 ........................................................................................... 28
4.1 以單一元素之先驅物疊層方式成長CIS薄膜之比較 .................................. 28
4.1.1鍍製方法..................................................................................................... 28
4.1.2 XRD分析 .................................................................................................... 29
4.1.3 Raman光譜分析之database 建立 ........................................................... 34
4.1.4 用Raman量測不同先驅物疊層之CIS薄膜 .......................................... 37
4.1.5 CIS之表面形貌與cross section ................................................................ 39
4.1.6 以不同的單一元素疊層方式成長CIS薄膜反應機制之探討................ 43
4.2 CIS薄膜平整度之改善與binary 先驅物疊層方式之想法: .......................... 43
4.3以binary 先驅物疊層方式成長CIS薄膜於Mo背電極上 .......................... 51
4.4以Mo/InSe/CuSe/Se方式製作CIS薄膜之研究與Mo/CIS應力問題之探討................................................................................................................................. 57
4.4.1以Mo/InSe/CuSe/Se方式製作CIS薄膜之研究 ....................................... 57
4.4.2 Mo/CIS應力問題之探討 ........................................................................... 61
4.4.3 鍍製小壓應力的Mo薄膜解決應力問題 ................................................ 68
4.5 以InSe/CuSe/Se先驅物疊層合成之CIS薄膜的電性、光性與成分分析 71
4.5.1 CIS薄膜的電性分析............................................................................... 71
4.5.2 CIS薄膜的光性分析............................................................................... 72
4.5.3 CIS的成分分析....................................................................................... 74
參考文獻...................................................................................................................... 78
1. J. Britt, S. Wiedemann, R. Wendt, S. Albright, Technical Report NRELySR-520-26840 (1999 )1.
2. T. Satoh, Y. Hashimoto, S. Shimakawa, S. Hayashi, T. Negami, Proceedings of the 12th Int. Phot. Sci. and Eng. Conf., Korea (2001) 93.
3. F. Kessler, D. Rudmann, Solar Energy 77(2004) 685-695.
4. H.W. Schock , Thin film photovoltaics. Applied surface science, (1996) 606-616.
5. N.Chu, and D. Honeman, Solar cells (1991)197.
6. K.Zweibel, Harnessing solar cell-The photovoltaics challenge. (1990).
7. W.G.Adams, and R.E. Day, Proc. R. Soc (1877)113.
8. Y. Hamakawa, Thin-film solar cells : next generation photovoltaics and its applications, Berlin ; New York : Springer(2004) 164-169.
9. F. Abou-Elfotouh, D. J. Dunlavy and T.J. Coutts, Solar Cell, 27(1986)237.
10. G. D. Mooney and A. M. Hermann, J. R. Tuttle, D. S. Albin and R. Noufi, Solar Cells, 30 (1991) 69-77.
11. W. Riedl , J. Rimmasch , V. Probst , F. Karg , R. Guckenberger , Solar Energy Materials and Solar Cells 35 (1994) 129-139.
12. F.O. Adurodija , M.J. Carter, R. Hill, Solar Energy Materials and Solar Cells 40 (1996) 359-369.
13. F. Karg, V.Probst, United States Patent, Patent :5,578,503(1996)
14. T. Nakano, H.Mizuhashiy and S. Baba, Jpn. J. Appi. Phys.Vol. 44, No. 4A, (2005)1932–1938.
15. F. Karg, V. Probst, H. Harms, J. Rimmasch, W. Riedl, J. Kotschy, J. Holz, R. Treichler, O. Eibl, A. Mitwalsky and A. Kiendl, IEEE(1993)441-446.
16. F. Jiang, J. Feng, Thin Solid Films (2006)1950-1955.
17. C.H. Chung, S.D. Kima, H.J. Kim, F.O. Adurodija, K.H. Yoon, J. Song , Solid State Communications 126 (2003) 185–190.
18. F. O. Adurodija, J. Song, K. H. Yoon, S. K. Kim, Materials in Electronics 9 (1998) 361-366.
19. M.Altosaar, J.Raudoja, E.Mellikov, M. Grossberg, L.Kaupmees, P.Barvinschi, Solar Energy Materials & Solar Cells 93 (2009) 11–14.
20. F.O. Adurodija, S.K. Kim, S.D. Kim, J.S. Song, K.H. Yoon, B.T. Ahn, Solar Energy Materials and Solar Cells 55 (1998) 225-236.
21. J. Djordjevic, R. Scheer, Journal of Crystal Growth 289 (2006) 113–120.
22. J. Djordjevic, E. Rudigier, R. Scheer, ournal of Crystal Growth 294 (2006) 218–230.
23. F. Kurdesau, M. Kaelin, V.B. Zalesski, V.I. Kovalewsky, V.F. Gremenok, E.P. Zaretskaya, Thin Solid Films 451 –452 (2004) 245–249.
24. K.T. Ramakrishna Reddy , I. Forbes , R.W. Miles , M.J. Carter , P.K. Dutt, Materials Letters 37(1998)57–62.
25. D. Bhattacharyya, I.Forbes, F. O. Adurodija, M. J. Carter, Journal of Materials Science 32 (1997) 1889–1894.
26. F.O. Adurodija, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, K.H. Yoon, B.T. Ahn, Thin Solid Films 338 (1999) 13-19.
27. F.O. Adurodija, M.J. Carter and R. Hill, IEEE(1994)186.
28. F.O. Adurodija, M.J. Carter, R. Hill, Solar Energy Materials and Solar Cells 37 (1995) 203-216.
29. 簡唯倫,CuInSe2薄膜硒化製程之研究,國立中山大學材料科學研究所碩士論文(2008)20-56.
30. A. Gupta, S. Isomura, Solar Energy Materials and Solar Cells 53 (1998) 385-401
31. V.Alberts , M.Chenene,et al. Materials In Electronics 11 (2000) 285-290.
32. D. Wolf, G. MuÈller, Thin Solid Films 361-362 (2000) 155-160.
33. A.Brummer, V.Honkima‥ki, P.Berwian, V.Probst, J.Palm , R.Hock,
Thin Solid Films 437 (2003) 297–307.
34. K.Kushiya, A.Shimizu, A.Yamada, M.Konagai, Jpn. J. Appi. Phys. Vol(1995)54-60.
35. S.Yamanaka, M.Tanda, et al. Jpn. J. Appi. Phys.vol30 (1991) 442-446.
36. G. Morell, R. S. Katiyar, and S. Z. Weisz, T. Walter and H. W. Schock, Appl. Phys. Lett. 69 (7)(1996)987-989.
37. E. Rudigier , J. Djordjevic , C. von Klopmann , B. Barcones , A. Pe′rez-Rodrı′guez, R.Scheer, Journal of Physics and Chemistry of Solids 66 (2005) 1954–1960.
38. E.P. Zaretskaya, V.F. Gremenok, V. Riede, W. Schmitz, K. Bente, V.B. Zalesskid, O.V. Ermakov, Journal of Physics and Chemistry of Solids 64 (2003) 1989–1993.
39. C. Rincon, F. J. Ramirez, J. Appl. Phys. 72 (9)(1992)4321-4324.
40. H. Tanino, T. Maeda, H. Fujikake,et al., Phys. Rev. B 45, (1992) 13- 323~330.
41. 孫毓詳,可撓式CuInSe2薄膜太陽能電池之研製,國立中山大學材料科學研究所碩士論文(2008)56.
42. 羅吉宗,薄膜科技與應用,全華科技圖書股份有限公司(2005) 8-19~8-22.
43. J. R. Ferraro, K.Nakamoto,” Introductory Raman Spectroscopy .” Academic Press(1994)
44. M.Fox,” Optical Properties of Solids.”Oxford University Press(2001)204-221.
45. B. D. Cullity, S. R. Stock,” Elements of X-Ray Diffraction third edition”, Prentice Hall(2001)11.
46. B. Predel, O. Madelung, “phase equilibria crystallographic and thermodynamic data of binary”, Springer(1991)
47. L. L. Kerr. S. Kim, S. Kincal. M. Ider, S. Yoon, and T. J. Anderson, IEEE(2002)676-679.
48. T.J. Anderson, O.D. Crisalle, S.S. Li, and P.H. Holloway, Subcontractor Report of NREL and Florida University(2003)Chp.4
49. J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezkoa), Joural of Applied Physics,Vol 87(2000)3683-3690.
50. S. C. Park, D.Y. Lee, Byung Tae Ahn, et al, Solar Energy Materials & Solar Cells 69 (2001) 99-105.
51. W.K. Kim , S. Kim , E.A. Payzant , S.A. Speakman , S. Yoon , R.M. Kaczynski et al, Journal of Physics and Chemistry of Solids 66 (2005) 1915–1919.
52. S. Kim, W. K. Kim, R. M. Kaczynski, R. D. Acher, S. Yoon, T. J. Anderson et al, American Vacuum Society J. Vac. Sci. Technol. A 23.(2)(2005)310-315.
53. K.N. Tu, J.W.Mayer, L.C.Feldman, Macmillan Publishing Company, New York(1992)84-88.
54. T. J. Vink, M. A. J. Somers, J. L. C. Daams and A. G. Dirks, Jpn. J.
Appi. Phys. Vol 70 (8),(1991)4301-4308.
55. J.H. Scofield, A. Dud, D. Albin, B.L. Ballard, P.K. Predecki, Thin Solid Films 260 ( 1995) 26-31.
56. R. Klenk, M. C.Lux-Steiner, Thin Solid Solar Cells (2006)250-251.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔