(34.226.234.102) 您好!臺灣時間:2021/05/12 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳榮泰
研究生(外文):Lung-tai Chen
論文名稱:創新型之微機電式壓力感測器構裝
論文名稱(外文):A Novel Packaging for MEMS-Based Pressure Sensors
指導教授:鄭木海
指導教授(外文):Wood-Hi Cheng
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:110
中文關鍵詞:構裝壓力感測器微機電
外文關鍵詞:packagingpressure sensorMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種創新型之微機電式壓力感測器構裝方法,其做法為使用一可圖樣化之超厚膜光阻(150毫米厚度) ,來定義出壓力計構裝體中之感測通道,在相同之創新構裝概念下,依據不同光阻材料之材料特性可開發出犧牲-置換和圍籬環等兩個不同之構裝架構。
本論文中採用實驗量測與有限元素模型分析之方法,來驗證構裝後之壓力計感測特性。以犧牲-置換和圍籬環構裝方式研製之已構裝壓力計的零位偏移溫度係數(TCO)分別為-0.07和-0.19 % span/oC,皆符合未構裝壓力計之零位偏移溫度係數規格(TCO < -0.2% span/oC),實驗證實,本論文中所提出之兩個構裝方式中的光阻,皆能在165度C與1.86Mpa之模成型製程條件下,避免高溫/高壓之液態模成型化合物對壓力計構裝體之感測通道的污染。以犧牲-置換和圍籬環構裝方式完成之壓力計構裝體之構裝尺寸皆為4.0 x 4.0 x 1.5 mm,相對於目前已商業化之壓力計構裝之體積至少縮小7倍以上。除此之外,本論文同時開發一150
This dissertation proposes a novel packaging methodology for micro-electro-mechanical systems (MEMS) based pressure sensors by using a patterned ultra-thick (150
Contents
Chinese Abstract …………………………………………………….………………… I
English Abstract ……………………………………………………………………… II
Acknowledgement ……………………………………………………………………. IV
Contents …………………………………………………………..…..……................. V
List of Figures ……………………………………………………...…………………. VII
List of Tables …………………………………….…………….……………………… X

Chapter 1 Introduction 1
1.1 Background……………………………………………………………………. 1
1.2 Motivation and objectives……………………………………………………… 1
1.3 Thesis organization…………………………………………………………….. 3

Chapter 2 Pressure sensor packages 5
2.1 MEMS-based pressure sensors………………………………………………. 5
2.2 Piezoresistive theory………………………………………………………….. 10
2.3 Wheatstone bridge……………………………………………………………... 13
2.4 Pressure sensor packages………………………………………………………. 15
2.5 Our approaches………………………………………………………….……. 22
2.6 References……………………………………………………………………… 24

Chapter 3 The lithographic Dam-ring Approach 27
3.1 Introduction…………………………………………………………………….. 27
3.2 MEMS-based pressure sensors………………………………………………… 27
3.2.1 Piezoresistive Pressure Chip…………………………………………… 27
3.2.2 Packaging process…………………………………………………….. 29
3.3 Finite element analysis………………………………………………………… 34
3.3.1 Calculation of the signal output………………………………………... 34
3.3.2 FE model of the package………………………………………………. 35
3.4 Measurement setup 38
3.5 Results and discussion……………………………………..…………………... 39
3.5.1 Verification of the FE model…………………………………………….. 39
3.5.2 Packaged pressure sensor………………………………………………… 43
3.5.3 Package characterization…………………………………………………. 45
3.6 Summary……………………………………………………………………….. 52
3.7 Reference………………………………………………………………………. 53


Chapter 4 The Sacrifice-replacement Approach 54
4.1 Introduction…………………………………………………………………….. 54
4.2 Packaging design………………………………………………………………. 54
4.2.1 Piezoresisive pressure sensor ……………………………..……………... 54
4.2.2 Packaging process ……………………………………………………….. 57
4.3 Finite element analysis…………………………………………………………. 65
4.4 Results and discussion…………………………………………………………. 68
4.4.1 Validation of the FE models ……………………………………………... 68
4.4.2. Packaged pressure sensor……………………………………………….. 70
4.4.3 Characterization………………………………………………………….. 73
4.5 Summary……………………………………………………………………….. 80
4.6 Reference………………………………………………………………………. 82

Chapter 5 Conclusions 84

Curriculum Vitae 86
[2.1] G.T. Kovacs, Micromachined Transducers Sourcebook (New York: McGraw-Hill), 1998.
[2.2] J. Segovia, F.B. Montserrat, J. Quero, a novel suspended gate MOSFET pressure sensor, SPIE, 5836, 2005, pp. 363-370.
[2.3] S.P. Chang, M. Allen, capactive pressure sensors with stainless steel diaphragm and substrate, J. Micromech. Microeng. 14 (2004) 612-518.
[2.4] H.S. Ko, C.W. Liu, C. Gau, a novel fabrication for pressure sensor with polymer material and Its characteristic testing, 2nd IEEE international conference on neon/micro engineering and molecular systems, Bangkok, Thailand, 2007, pp. 561-566.
[2.5] S.M. Sze, Semiconductor Sensors, John Wiley & Sons, 1994, pp. 160-189.
[2.6] T. Janczek, Material investigation for pressure sensor package P-DSOF-8-1, The first IEEE Int. Symp. on Polymeric Electronic Packaging, PEP’97, Norrkoping, Sweden, 1997, pp. 220-222.
[2.7] E. Abbaspour-Sani, S. Afrang, M.M. Teymoori, A novel method for packaging of micromachined piezoresistive pressure sensor. IEEE Int. Conf. On Semiconductor Electronics, ICSE2002, Penang, Malaysia, 2002, pp. 141-144.
[2.8] H. Krassow, F. Campabadal, E. Lora-Tamayo, Wafer level packaging of silicon pressure sensors. Sens. Actuator. A 82 (2000) 229-233.
[2.9] F. Campabadal, L. Cmeras, M.J. Arrieta, packaging of silicon pressure sensors for home application, IEEE Conference on Electron Devices and Solid-State Circuits, Hong-Kong, 2005, pp. 589-591.
[2.10] J. Dancaster, W. Kim, D. Do, two-chip pressure sensor and single conditioning, 12th International Conference on Solid-State Sensors, Actuators and Micorsystems, Boston, USA, 2003, pp. 1699-1702.
[2.11] R. Krondorfer, Y. K. Kim, J. Kim, finite element simulation of packaging stress in transfer molded MEMS pressure sensors, Microelectronics reliability (2004) 1995-2002.
[2.12] F. Campabadal, L. Cmeras, M. J. Arrieta, packaging of silicon pressure sensors for home application, IEEE Conference on Electron Devices and Solid-State Circuits, Hong-Kong, 2005, pp. 589-591.
[2.13] R. Krondorfer, Y. K. Kim, packaging effect on MEMS pressure sensor performance, IEEE Trans. Compon. Packag. Technol. 30 (2007) 285-293.
[2.14] E.K. Teng Hock, Z.B. Zong, S.G. Lee, S.C. Ho, N. Srikanth, T. Zhou, K.W. Loo, M. Hundt, Development of transfer molding technology for package with die active side partially exposed, 53th Electronic Components and Technology Conference, 2003, pp. 365-372.
[2.15] C. Cotofana, A. Bossche, P. Kaldenberg, J. Mollinger, Low-cost plastic sensor packaging using the open-window package concep”, Sens. Actuator. A 67 (1998) 185-190.
[3.1] M.Y. Tsai, C.T. Wang, C.H. Hsu, The effect of epoxy molding compound on thermal/residual deformations and stress on IC packaging during manufacturing process, IEEE Transaction on Component and Packaging Technology 29 (2006) 625-635.
[3.2] C.C. Lee, C.T. Peng, K.N. Chiang, Packaging effect investigation of CMOS compatible pressure sensors using flip chip and flex circuit board technologies, Sens. Actuators A 126 (2006) 48-55.
[3.3] C.T. Peng, J.C. Lin, C.T. Lin, K.N. Chiang, Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology, Sens. Actuator. A 119 (2005) 28-37.
[3.4] C.S. Smith, Piezoresistance effect in germanium and silicon, Phys. Rev. 94 (1954) 42–49.
[3.5] J. Xu, Y. Zhao, Z. Jiang. Analysis of the packaging stresses in monolithic multi-sensor, 2nd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 2007, pp. 241-244.
[3.6] J.B. Nysether, A. Larsen, B. Liverod, P. Ohlckers, Measurement of package-induced stress and thermal zero shift in transfer molded silicon piezoresistive pressure sensors, J. Micromech. Microeng. 8 (1998) 168-171.
[4.1] C.S. Smith, Piezoresistance effect in germanium and silicon, Phys. Rev. 94 (1954) 42–49.
[4.2] S. Roth, L. Dellmann, G. A. Racine, N.F. Rooij, high aspect ratio UV photography for electroplated structure, J. Micromech. Microeng. 9 (1999) 105-108.
[4.3] M. Brunet, T. O’Donnell, J. O’Brien, thick photoresist development for the fabrication of high aspect ratio magnetic coils, J. Micromech. Microeng. 12 (2002) 444-449.
[4.4] E. Kukharenka, M. Kraft, reliability of electroplating mold with thick positive spr 220-7 photoresist, J. Mater. Sci. Mater. Electron. 14 (2003) 319-322.
[4.5] K.Y. Lee, N. LaBianca, S.A. Rishton, micromachining applications of a high resolution ultratick photoresist, J. Vac. Sci. Technol. B (1995) 3012-3016.
[4.6] H. Lorenz, M. Despont, P. Vettiger, P. Renaud, fabrication of photoplastic high-aspect ratio micro-parts and micro-molds using SU-8 UV resist, Microsyst. Technol. 4 (1998) 143-146.
[4.7] H. Lorenz, M. Despont, N. Fahrni, high-aspect-ratio ultrathick negative-tone near-UV photoresist and its applications for MEMS, J. Micromech. Microeng. 7 (1997) 121-124.
[4.8] F.G. Tseng, C.S. Yu, high aspect ratio ultra-thick micro-stencil by JSR THB-430N negative tone UV photoresist, Sens. Actuator. A (2002) 764-770.
[4.9] M.Y. Tsai, C.T. Wang, C.H. Hsu, the effect of epoxy molding compound on thermal/residual deformations and stress on IC packaging during manufacturing process, IEEE Trans. Compon. Packag. Technol. 29 (2006) 625-635.
[4.10] H.R. Krondorfer, Y.K. Kim, packaging effect on MEMS pressure sensor performance, IEEE Trans. Compon. Packag. Technol. 30 (2007) 285-293.
[4.11] J. Xu, Y. Zhao, Z. Jiang, analysis of the packaging stress in monolithic multi-sensor, Proc. 2nd IEEE international conference on Nano/Micro engineering and molecular systems, Thailand, 2007, pp. 241-244.
[4.12] L.T. Chen, W.H.Cheng, a novel plastic package of pressure sensors fabricated using the lithographic dam-ring approach, Sens. Actuator. A 149 (2009) 165-171.
[4.13] J. B. Nysether, A. Larsen, B. Liverod, P. Ohlckers, Measurement of package-induced stress and thermal zero shift in transfer molded silicon piezoresistive pressure sensors, J. Micromech. Microeng. 8 (1998) 168-171.
[4.14] X. Zhang, S. Park, M.W. Judy, accurate assessment of packaging stress effects on MEMS sensors by measurement and sensor-package interaction simulation, J. Microelcctromachical systems 16 3 (2007) 639-649.
[4.15] Y. Kanda, a graphical representation of the piezoresistance coefficients in silicon, IEEE Trans. Electron Devices ED-29 (1982) 64-70.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔