|
[2.1] G.T. Kovacs, Micromachined Transducers Sourcebook (New York: McGraw-Hill), 1998. [2.2] J. Segovia, F.B. Montserrat, J. Quero, a novel suspended gate MOSFET pressure sensor, SPIE, 5836, 2005, pp. 363-370. [2.3] S.P. Chang, M. Allen, capactive pressure sensors with stainless steel diaphragm and substrate, J. Micromech. Microeng. 14 (2004) 612-518. [2.4] H.S. Ko, C.W. Liu, C. Gau, a novel fabrication for pressure sensor with polymer material and Its characteristic testing, 2nd IEEE international conference on neon/micro engineering and molecular systems, Bangkok, Thailand, 2007, pp. 561-566. [2.5] S.M. Sze, Semiconductor Sensors, John Wiley & Sons, 1994, pp. 160-189. [2.6] T. Janczek, Material investigation for pressure sensor package P-DSOF-8-1, The first IEEE Int. Symp. on Polymeric Electronic Packaging, PEP’97, Norrkoping, Sweden, 1997, pp. 220-222. [2.7] E. Abbaspour-Sani, S. Afrang, M.M. Teymoori, A novel method for packaging of micromachined piezoresistive pressure sensor. IEEE Int. Conf. On Semiconductor Electronics, ICSE2002, Penang, Malaysia, 2002, pp. 141-144. [2.8] H. Krassow, F. Campabadal, E. Lora-Tamayo, Wafer level packaging of silicon pressure sensors. Sens. Actuator. A 82 (2000) 229-233. [2.9] F. Campabadal, L. Cmeras, M.J. Arrieta, packaging of silicon pressure sensors for home application, IEEE Conference on Electron Devices and Solid-State Circuits, Hong-Kong, 2005, pp. 589-591. [2.10] J. Dancaster, W. Kim, D. Do, two-chip pressure sensor and single conditioning, 12th International Conference on Solid-State Sensors, Actuators and Micorsystems, Boston, USA, 2003, pp. 1699-1702. [2.11] R. Krondorfer, Y. K. Kim, J. Kim, finite element simulation of packaging stress in transfer molded MEMS pressure sensors, Microelectronics reliability (2004) 1995-2002. [2.12] F. Campabadal, L. Cmeras, M. J. Arrieta, packaging of silicon pressure sensors for home application, IEEE Conference on Electron Devices and Solid-State Circuits, Hong-Kong, 2005, pp. 589-591. [2.13] R. Krondorfer, Y. K. Kim, packaging effect on MEMS pressure sensor performance, IEEE Trans. Compon. Packag. Technol. 30 (2007) 285-293. [2.14] E.K. Teng Hock, Z.B. Zong, S.G. Lee, S.C. Ho, N. Srikanth, T. Zhou, K.W. Loo, M. Hundt, Development of transfer molding technology for package with die active side partially exposed, 53th Electronic Components and Technology Conference, 2003, pp. 365-372. [2.15] C. Cotofana, A. Bossche, P. Kaldenberg, J. Mollinger, Low-cost plastic sensor packaging using the open-window package concep”, Sens. Actuator. A 67 (1998) 185-190. [3.1] M.Y. Tsai, C.T. Wang, C.H. Hsu, The effect of epoxy molding compound on thermal/residual deformations and stress on IC packaging during manufacturing process, IEEE Transaction on Component and Packaging Technology 29 (2006) 625-635. [3.2] C.C. Lee, C.T. Peng, K.N. Chiang, Packaging effect investigation of CMOS compatible pressure sensors using flip chip and flex circuit board technologies, Sens. Actuators A 126 (2006) 48-55. [3.3] C.T. Peng, J.C. Lin, C.T. Lin, K.N. Chiang, Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology, Sens. Actuator. A 119 (2005) 28-37. [3.4] C.S. Smith, Piezoresistance effect in germanium and silicon, Phys. Rev. 94 (1954) 42–49. [3.5] J. Xu, Y. Zhao, Z. Jiang. Analysis of the packaging stresses in monolithic multi-sensor, 2nd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 2007, pp. 241-244. [3.6] J.B. Nysether, A. Larsen, B. Liverod, P. Ohlckers, Measurement of package-induced stress and thermal zero shift in transfer molded silicon piezoresistive pressure sensors, J. Micromech. Microeng. 8 (1998) 168-171. [4.1] C.S. Smith, Piezoresistance effect in germanium and silicon, Phys. Rev. 94 (1954) 42–49. [4.2] S. Roth, L. Dellmann, G. A. Racine, N.F. Rooij, high aspect ratio UV photography for electroplated structure, J. Micromech. Microeng. 9 (1999) 105-108. [4.3] M. Brunet, T. O’Donnell, J. O’Brien, thick photoresist development for the fabrication of high aspect ratio magnetic coils, J. Micromech. Microeng. 12 (2002) 444-449. [4.4] E. Kukharenka, M. Kraft, reliability of electroplating mold with thick positive spr 220-7 photoresist, J. Mater. Sci. Mater. Electron. 14 (2003) 319-322. [4.5] K.Y. Lee, N. LaBianca, S.A. Rishton, micromachining applications of a high resolution ultratick photoresist, J. Vac. Sci. Technol. B (1995) 3012-3016. [4.6] H. Lorenz, M. Despont, P. Vettiger, P. Renaud, fabrication of photoplastic high-aspect ratio micro-parts and micro-molds using SU-8 UV resist, Microsyst. Technol. 4 (1998) 143-146. [4.7] H. Lorenz, M. Despont, N. Fahrni, high-aspect-ratio ultrathick negative-tone near-UV photoresist and its applications for MEMS, J. Micromech. Microeng. 7 (1997) 121-124. [4.8] F.G. Tseng, C.S. Yu, high aspect ratio ultra-thick micro-stencil by JSR THB-430N negative tone UV photoresist, Sens. Actuator. A (2002) 764-770. [4.9] M.Y. Tsai, C.T. Wang, C.H. Hsu, the effect of epoxy molding compound on thermal/residual deformations and stress on IC packaging during manufacturing process, IEEE Trans. Compon. Packag. Technol. 29 (2006) 625-635. [4.10] H.R. Krondorfer, Y.K. Kim, packaging effect on MEMS pressure sensor performance, IEEE Trans. Compon. Packag. Technol. 30 (2007) 285-293. [4.11] J. Xu, Y. Zhao, Z. Jiang, analysis of the packaging stress in monolithic multi-sensor, Proc. 2nd IEEE international conference on Nano/Micro engineering and molecular systems, Thailand, 2007, pp. 241-244. [4.12] L.T. Chen, W.H.Cheng, a novel plastic package of pressure sensors fabricated using the lithographic dam-ring approach, Sens. Actuator. A 149 (2009) 165-171. [4.13] J. B. Nysether, A. Larsen, B. Liverod, P. Ohlckers, Measurement of package-induced stress and thermal zero shift in transfer molded silicon piezoresistive pressure sensors, J. Micromech. Microeng. 8 (1998) 168-171. [4.14] X. Zhang, S. Park, M.W. Judy, accurate assessment of packaging stress effects on MEMS sensors by measurement and sensor-package interaction simulation, J. Microelcctromachical systems 16 3 (2007) 639-649. [4.15] Y. Kanda, a graphical representation of the piezoresistance coefficients in silicon, IEEE Trans. Electron Devices ED-29 (1982) 64-70.
|