跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/28 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王信國
研究生(外文):Shin-guo Wang
論文名稱:主動層共軛高分子支鏈結構改變對有機太陽能電池之研究
論文名稱(外文):The Crystallization of Side Chain Effect on the Performances of Poly(3-dodecylthiophene)/fullerene “Bulk Heterojunction” Solar Cells
指導教授:黃文堯黃文堯引用關係
指導教授(外文):Wen-Yao Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:119
中文關鍵詞:太陽能電池支鏈高分子
外文關鍵詞:Solar CellCrystallizationSide ChainPoly(3-dodecylthiophene)
相關次數:
  • 被引用被引用:3
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本實驗中,利用P3DDT(3-dodecylthiophene-2,5-diyl) 搭配PCBM ([6,6]-phenyl C61-butyric acid methyl ester) 溶於氯仿(chloroform)中以比例為1:1當作主動層,並以旋轉塗佈法製作有機高分子太陽能電池。元件中陽極與陰極分別使用 ITO 與Al,以及用 PEDOT:PSS 當作電洞傳輸層來完成元件。製作過程中利用130℃的溫度烤乾(chloroform)溶劑後,發現元件效率很低,可以使用POM圖看出隨溫度上升薄膜的改變及利用AFM圖得出粗糙度的變化,而改用常溫下自然揮發溶劑之後,元件效率提升為0.64 (%)。
由DSC圖推測P3DDT除了本身主鏈的結晶外,其長碳鏈在低溫時有支鏈結晶的現象,而低溫時支鏈結晶造成主鏈較為隨機的排列,使得P3DDT:PCBM薄膜粗糙度下降,升溫時,由POM圖中發現主動層P3DDT:PCBM薄膜逐漸有不平整的現象產生,推測隨著溫度上升支鏈結晶開始融化,由XRD圖的升溫變化得知材料逐漸往主鏈開始聚集,但是支鏈原本結晶的部分溶化後形成凹洞,而聚集的部分突起,而形成凹凸不平的薄膜,且回到常溫後材料亦不會重新填補空洞,由AFM發現表面粗糙度增加,所以雖然P3DDT熱裂解溫度Td(℃)高達487℃,但是只要在製成時有溫度超過90℃,使薄膜粗糙度增加,則會導致元件效率為4×10-3(%)。
推測操作在不同溫度下,P3DDT凹凸不平的薄膜造成與Al電極接觸的情形變差,P3DDT分子重新排列的現象改變了與PCBM分子間的間距,使PCBM的顆粒聚集,這兩種改變對於元件的效率有很大的影響。
P3DDT (3-dodecylthiophene-2,5-diyl) and PCBM( [6,6]-phenyl C61-butyric acid methyl ester) were fabricated to the active layer of Bulk Heterojunction Organic Solar Cells .We obtained the device efficiency was 0.64 % by evaporating solvent at room temperature. We measured Thermal decomposition Temperature (Td) of P3DDT was 487℃. But operational temperature was over 90℃, it could affect the roughness of thin film and make efficiency to be 4×10-3(%). For results of experiments, we know that roughness changed by the crystallization of side chain and exciton dissociation modified by the morphology between P3DDT and PCBM.
Thin film solar cell has a large effect on the formation of active layer, such as heat treatment, choices of solvents, composition ratio, and speed of spin coating. The efficiency of solar cell has been shown to be highly sensitive to the size, composition and crystallization of the formed domains. We studied two kinds of conjugated polythiophenes with the same main chain but different side chain. When the number of carbon atoms of alkyl side chains is more than 10, some orderly arrangements will occur for side chains between the layers. We tried to explain the crystallization caused by long alkyl side chains determined which intrinsic phenomena are the most evident for altering the PCE of solar cell. After recrystallization, the layered structures of P3DDT can be improved, but those orderly degrees of the arrangements with PCBM are further aggregated.
The main point for low PEC and Jsc by heat treatment is the unfavorable and roughened morphology. Charge transfer only occurs at the boundary ,which is interfacial area between donor and acceptor materials, hence, the low Jsc could be caused by poor charge transfer between P3DDT and PCBM. The redistributed arrangement of P3DDT domains exclude PCBM from original space, and it makes PCBM to aggregate large particles, from nanophase to mesophase scales, which reduce mutual solubility to be the source of PCE and Jsc reduction.
目錄
論文審定書(中文)……………………………..…………………………I
論文審定書(英文)………………………………………………………II
誌 謝……………………………………………………………......….III
摘 要…………………………………………. …………………….….IV
Abstract ………………………….....….………………………………VI
圖目錄………………………………………………….…….….…….XII表目錄…………………………………………………………...…....XVI

第一章 緒論…………………………………………………………….. 1
1.1 前言……………………………………………………...…………..1
1.2 有機太陽能電池結構發展….……….……………………...………3
1.2.1單層結構………………………………………………………3
1.2.2雙層異質接面(heterojunction)結構………………..………… 4
1.2.3單層異質接面結構 .………………………………….………..6
1.3 研究動機與目的……………………………………….……...…...10

第二章 基本理論………………………………………………………17
2.1有機薄膜太陽能電池之工作原理…………………….…………... 17
2.2 有機太陽能電池之功率轉換效率…………………….…………..22

第三章 實驗儀器及其原理………………….………………………...24
3.1紫外與可見光光譜儀(UV-Vis spectroeter)..….……..…........….25
3.1.1 儀器簡介………..…………….…………………………….25
3.1.2儀器原理………...…………….…………………………….26
3.2熱重分析儀(thermogravimetric analyzer, TGA)…..……………..28
3.2.1儀器簡介….………………………………………………….29
3.2.2儀器原理……………………………………………………..29
3.3熱示差掃描卡量計(differential scanning calorimetry ,DSC)….....29
3.3.1儀器簡介…………………………………………………….30
3.3.2 儀器原理 …………………………………………………...30
3.4場發射型掃描式電子顯微鏡(field emission gun scanning electron microscopy, FEG-SEM)….……………………………….….31
3.4.1儀器簡介…….……………………………………………….32
3.4.2儀器原理……………………………………………………..32
3.5偏光顯微鏡 (Polarizing Optical Microscope)…..………..……..….33
3.6粉末 X-ray 繞射儀(powder X-ray diffractmeter, XRD)…….....35
3.6.1 儀器簡介 …………………………………………………...35
3.6.2 儀器原理…………………………..………………………..36
3.7旋轉塗佈機(spin coater)…………………………………………….37
3.8蒸鍍機(Evaporator) ……………………………………………..….38
3.8.1 儀器簡介 ……………………………………………….…..38
3.8.2 儀器原理…………………..…………………….….………39
3.9 光電子光譜分析儀(Photo-electron spectroscopy in air,簡稱PESA).................... ........................................................................40
3.10表面輪廓儀(Surface profiler)...........................................................42
3.11太陽光譜模擬量測系統(solar simulator system)..........................45
3.11.1 儀器簡介…………………………………………………..45
3.11.2 儀器原理…….………...…………………………………..46
3.12原子力量子顯微鏡( Atomic Force Microscope,AFM )..................47
3.12.1 儀器簡介……….…………………..……………….……..47
3.12.2 儀器原理…………………………………………………..48

第四章 Thin film solar cell元件之製作...…….……………………...54

第五章 量測與結果分析………….…………………………………...59
5.1 Donor 材料之熱分析…….….…………………….……………….63
5.2 材料排列分析………….…………...…………………...…………67
5.3 材料光譜分析………..…………….…………………...………….75
5.4元件效率分析……………………………………………………….77
5.4.1 元件的製作與代號的說明……….……....…………………77
5.4.2 熱處理對效率的影響………….…….……………………...77
5.4.3 支鏈結晶可能造成的影響 …………..……………………..79
5.5主動層薄膜表面形態分析…………….……………………………82
5.6陰極Al表面形態分析………………….…………………………..87
5.7探討元件的參數Voc…………………….………………………….93
5.8探討元件的參數Jsc …………………….….……………...………96

第六章 結論………………………………………………………........99

第七章 參考文獻……………………………………………………..101
[1] Le Huong Nguyen, Harald Hoppe,Tobias Erb, Serap Günes, Gerhard Gobsch, N. Serdar Sariciftci Adv. Funct. Mater., 17, 1071–1078, (2007).
[2] Shireesh Pankaj, Elke Hempel, and Mario Beiner Macromolecules,42, 716-724, (2009).
[3] Adam J. Moule, Sybille Allard, Nils M. Kronenberg, Argiri Tsami, Ullrich Scherf, and Klaus Meerholz J. Phys. Chem. C, 112 (33), 12583-12589, (2008).
[4] Solenn Berson, Rémi De Bettignies, Séverine Bailly, and Stéphane Guillerez Adv. Funct. Mater., 17, 1377–1384, (2007).
[5] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens J. Appl. Phys., Vol. 94, No. 10, 15 November, (2003).
[6] Jie Liu, Yijian Shi, and Yang Yang Adv. Funct. Mater., 11, No. 6, December, (2001).
[7] S.Sensfuss,M. Al-Ibrahim,A. Konkin,G. Nazmutdinova,U. Zhokhavets,G. Gobsch, D. A.M.Egbe,E. Klemm,H.-K. Roth Proc of SPIE Vol.5215, (2004).
[8] Haifeng Shi, Ying Zhao, Shichun Jiang, Joerg Rottstegge, John H. Xin,Dujin Wang, and Duanfu Xu Macromolecules, 40, 3198-3203 , (2007).
[9] Qiquan Qiao and James T. McLeskey,Jr. APPLIED PHYSICS LETTERS 86,153501,(2005).
[10] Vibha Saxena,Rajiv Prakash ,Polymer Bulletin 45,267-274,(2000).
[11] Woon-Hyuk Baek,Hyun Yang,Tae-Sik Yoon,C.J. Kang,Hyun Ho Lee,Yong-Sang Kim Sol. Energy Mater. Sol. Cells ,(2009).
[12] Maher Al-Ibrahim and Oliver Ambacher APPLIED PHYSICS LETTERS 86,201120, (2005).
[13] Valentin D. Mihailetchi, Jeroen K. J. van Duren, Paul W. M. Blom, Jan C. Hummelen, Rene A.J. Janssen, Jan M. Kroon, Minze T. Rispens,Wil Jan H. Verhees, and Martijn M. Wienk , Adv. Funct. Mater.,13,No. 1, January,(2003).
[14]Jinsong Huang ,Gang Li, and Yang Yang APPLIED PHYSICS LETTERS 87,112105 ,(2005).
[15]Chunfu Zhang, S. W. Tong,Chunxiang Zhu,Changyun Jiang, E. T. Kang, and D. S. H. Chan APPLIED PHYSICS LETTERS 94,103305, (2009).
[16]Takahiro IIDA, Yasuhiro SAKAI, Takeshi SHIMOMURA, Tohru NAKAMURA, and Kohzo ITO Jpn. J. Appl. Phys., Vol. 46, No. 46 ,(2007).
[17] Ann Swinnen, Ilse Haeldermans, Martin vande Ven, Jan D’Haen, Geert Vanhoyland, Stefano Aresu, Marc D’Olieslaeger, and Jean Manca Adv. Funct. Mater. 16, 760–765, (2006).
[18] 闕宇宏,具光電轉換與可規則排列材料之有機光伏特計薄膜研究, 國立中山大學碩士論文, (2007).
[19]C. W. Tang, “Two-layer organic photovoltaic cell”,Appl. Phys. Lett. 48, pp. 183-185, (1986).
[20]M. Granstro‥m, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R.H. Friend, Nature (London) 395, 257,(1998).
[21]C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913, (1987).
[22]Dipl.Ing. Klaus Petritsch, “Organic Solar Cell Architectures”, Cambridge and Graz, (2000).
[23]Organic Photovoltaics , C.J.Brabec , V. Dyakonov , J. Parisi , and N.S. Saricifti (Eds.)
[24]Ming-Chung Wu,Yun-Yue Lin,Sharon Chen,Hsueh-Chung Liao,Yi-Jen Wu,Chun-Wei Chen,Yang-Fang , and Chen,Wei-Fang Su .Chemical Physics Letter 468 64-68 ,(2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊