跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃晉邦
研究生(外文):Jin-Bang Huang
論文名稱:固態氧化物燃料電池之緻密電解質膜製備及性能鑑定
論文名稱(外文):Preparation and characterization of dense electrolyte films for solid oxide fuel cells
指導教授:黃炳淮
指導教授(外文):Bing-Hwai Hwang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:陽極作用層靜電輔助氣相沉積法電解質
外文關鍵詞:electrolyteEAVDAFL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去幾年YSZ (Yttria Stabilized Zirconia)一直是高溫(>1000℃)固態氧化物燃料電池(SOFCs)的主要電解質材料,近年來CGO(Cerium Gadolinium Oxygen)由於其氧離子導電度優於YSZ材料,所以開始被應用於中溫(600℃~ 800℃)固態氧化物燃料電池的電解質,而且在電解質層與陽極複合基材之間沉積陽極作用層(Anode functional layer, AFL),可有效的提昇電池效能,故AFL也開始被大量的應用於固態氧化物燃料電池。
本研究將以靜電輔助氣相沉積法(Electrostatic Assisted Vapor Deposition, EAVD),來製備中溫固態氧化物燃料電池的CGO (Gadolinia-doped ceria)電解質層、以及NiO-CGO的陽極作用層,其中在EAVD系統中吾人所探討的參數有:鍍膜沉積的溫度、先驅物溶液的流率、及先驅物溶液的濃度。最後再將製備完成之電池量測其開路電壓(Open circuit voltage, OCV)。
本實驗最佳的NiO-CGO陽極作用層鍍膜參數為溫度400℃、濃度0.2 M、流率6 mL/hr,而CGO電解質層的最佳鍍膜參數為溫度400℃、濃度0.3 M、流率6 mL/hr。在以氫氣為燃料、空氣為氧化劑的測試條件之下,電池Ni-CGO/CGO/BSCF可在CGO厚度為25 μm,量測溫度為500℃時得到最大的OCV為0.86 V,而電池Ni-CGO/AFL/CGO/BSCF則可在CGO厚度為25 μm、AFL厚度為10 μm,量測溫度500℃時得到最大的OCV為0.91 V。
In the past few years, YSZ (Yttria Stabilized Zirconia) had been the dominate electrolyte material of high temperature (>1000℃) solid oxide fuel cells (SOFCs). Nowadays, CGO (Cerium Gadolinium Oxide) material has been considered as preferred electrolytes for solid oxide fuel cells (IT-SOFCs) used in the temperature range of 600℃~800℃ due to their excellent oxygen-ion conductivity compared to YSZ. The performance of unit cells can be improved when an anode functional layer (AFL) is employed between the anode composite substrate and the electrolyte. Therefore, AFL has been a lot of use in SOFCs
In this study, the deposition system of EAVD (Electrostatic Assisted Vapor Deposition) was employed to deposite CGO electrolyte films and NiO-CGO anode functional layer. In this study, deposition parameters such as deposition temperature, flow rate and concentration of precursor solution were varied to figure out their effects for the resultant films. Finally, the OCV of unit cells was also measured in this study.
In this work, the optimum concentration of precursor solution for NiO-CGO anode functional layer and CGO films were 0.2 M and 0.3 M, respectively. The optimum deposition temperature and flow rate for this two films were both 400℃ and 6 mL/hr, respectively. When the cells were test with H2 as fuel and air as oxidant, the unit cell of Ni-CGO/CGO/BSCF with CGO film thickness of 25 μm exhibited an maximum OCV of 0.86 V at 500℃ and the other unit cell of Ni-CGO/AFL/CGO/BSCF with 25 μm CGO film thickness and 10 μm AFL exhibited an maximum OCV of 0.91 V at 500℃.
中文摘要..................................................................................................Ⅰ
英文摘要..................................................................................................Ⅲ
目錄..........................................................................................................Ⅴ
表索引......................................................................................................Ⅸ
圖索引......................................................................................................Ⅹ
第一章、前言..............................................................................................1
1.1 研究背景.............................................................................................1
第二章、理論基礎與文獻回顧..................................................................3
2.1 燃料電池的發展.................................................................................3
2.1.1 固態氧化物燃料電池結構..........................................................4
2.1.2 固態氧化物燃料電池工作原理..................................................6
2.2 電解質材料Ce0.9Gd0.1O1.95 (Cerium Gadolinium Oxygen, CGO)…10
2.3 陽極複合材料Ni-CGO (Nickel-Cerium Gadolinium Oxygen) ......12
2.4 陽極作用層 (Anode functional layer, AFL)………………...…….13
2.5 陰極材料BSCF (Ba0.5Sr0.5Co0.8Fe0.2)………………………………14
2.6 靜電輔助氣相沉積法(Electrostatic Assisted Vapor Deposition, EAVD)…………………………………………………………………..16
2.6.1 EAVD法之鍍膜原理……………………………….......................16
2.7 cone-jet-mode之研究.........................................................................20
2.8 EAVD鍍膜的形貌研究…………………………………………….25
2.9 電化學理論………………………………………………………...27
2.9.1 燃料電池的極化現象…………………………………………27
2.9.2 內電流損失……………………………………………………28
2.9.3 歐姆極化....................................................................................28
2.9.4 活性極化....................................................................................29
2.9.5 電極介面的濃度極化................................................................30
2.9.6 頻率分析....................................................................................31
第三章、實驗步驟與規劃.......................................................................34
3.1 實驗藥品...........................................................................................34
3.2 實驗規劃...........................................................................................35
3.3 實驗流程...........................................................................................35
3.4 複合陽極基材製備………...............................................................37
3.5 靜電輔助氣相沉積法的設備...…………………………..…...…...38
3.6 配製NiO-CGO溶液先驅物………………..……………………...40
3.7 配製CGO溶液先驅物……………………………………………..40
3.8 以靜電輔助氣相沉積法沉積NiO-CGO陽極作用層的步驟….....40
3.9 以靜電輔助氣相沉積法沉積CGO電解質層的步驟....…..…….....43
3.10 製備BSCF陰極粉末………………….…………………………..45
3.11 製備BSCF網印漿料……..……………………...………………..46
3.12 NiO-CGO鍍膜參數之設定……………………………………….47
3.13 CGO鍍膜參數之設定……………………………………………..47
3.14 開路電壓(open-circuit voltage, OCV)量測方法…………………47
3.15 XRD分析…………………………………………………………..49
3.16 SEM觀察…………………………………………………………..49
第四章、結果與討論…….......................................................................50
4.1 高溫煅燒後的NiO-CGO鍍膜結果.................................................50
4.1.1 溫度系列………………………………………………………50
4.1.1.1 溫度系列的SEM觀察結果……………………………….50
4.1.2 濃度系列…………………………………………………..…..53
4.1.2.1 濃度系列的SEM觀察結果……………………..……….53
4.1.3 流率系列………………………………………………………56
4.1.3.1流率系列的SEM觀察結果……………………..………...57
4.1.4 NiO-CGO鍍膜結果的XRD分析………………………………60
4.1.5 NiO-CGO鍍膜結果的Mapping分析………………..…..…...60
4.2 高溫煅燒後的CGO鍍膜結果…………...……...............................61
4.2.1 溫度系列………………………..……………………..………61
4.2.1.1 溫度系列的SEM觀察結果……………...……..………...62
4.2.2 濃度系列…………………..…………………………..………64
4.2.2.1 濃度系列的SEM觀察結果………………………………65
4.2.3 流率系列…………………………………………..…..………67
4.2.3.1 流率系列的SEM觀察結果………………………………68
4.2.4 CGO鍍膜結果的XRD分析…………………………………...71
4.2.5 CGO鍍膜結果的Mapping分析………………………………71
4.3 CGO薄膜沉積於AFL的鍍膜煅燒結果…………………………..72
4.3.1 鍍膜結果的SEM觀察……………...…………………………73
4.3.2 鍍膜結果的Mapping分析…………………..………………..74
4.4 開路電壓(open circuit voltage, OCV)的性能量測………………..75
4.4.1 Ni-CGO/CGO/BSCF的量測結果……………………………..75
4.4.2 Ni-CGO/AFL/CGO/BSCF的量測結果………………………..77
第五章、結論……………………………………………………..……80
第六章、參考文獻………………………………………………………81
1. O. Yamamoto, Electrochemical Acta., 45 (2002) 2423
2. S. C. Singhal, Solid State Ionics, 135 (2000) 305
3. 方冠榮,黃朝琪,陳德源:材料會訊,8 (2001) 41
4. 翁秉智,陳友武,台灣綜合展望,2 (2002) 21
5. W. R. Grove and Philos, Mag., 14 (1839) 127
6. W. Nernst, J. Electrochem., 6 (1899) 41
7. E. Baur and H. Preis, J. Electrochem., 43 (1937) 727
8. K. Kordesch and G. Simader, Fuel cells and their applications, Weinheim, New York, VCH(1996) 51
9. D. Y. Wang and A. S. Nowick, J. Electrochem. Soc., 126 (1979) 1155
10. B. C. H. Steele, Solid State Ionics, 86 (1996) 1223
11. N.Q. Minh, J. Am. Ceram. Soc., 76 (1993) 563
12. Y. Wang, T. Mori, J. G. Li and J. Drennan, J. Europ. Ceram. Soc., 25 (2005) 949
13. V. grover and A. K. Tyagi, Material Research Bulletin, 39 (2004) 859
14. S. Bebelis, V. Kournoutis, A. Mai and F. Tietz, Solid State Ionics, 179 (2008) 1080
15. J. A. Kilner and B. C. H. Steele, Nonstoichiometric Oxides, ed. O. T. Sorensen (Academic Press, New York, 1981)
16. H. Inaba and H. Tagawa, Solid State Ionics, 83 (1996) 1
17. S. Baron, N. Brandon, A. Atkinson, B. Steele and R. Rudkin, J. Power Sources, 126 (2004) 58
18. X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H. Yoshida, T. Inagaki and K. Miura, J. Power Sources, 83 (1999) 170
19. X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H. Yoshida, T. Inagaki and K. Miura, Solid State Ionics, 133 (2000) 153
20. P. Garc′ıa, B. Ferrari, R. Moreno, A. J. S′anchez-Herencia and M. T. Colomer, J. Euro. Ceram. Soc., 27 (2007) 4241
21. T. Hosomi, M. Matsuda and M. Miyake, J. Euro. Ceram. Soc., 27 (2007)
22. T. Ishihara, T. Shibayama, H. Nishiguchi and Y. Takita, Solid State Ionics, 132 (2000) 209
23. C. G. Fonseca, R. M. F. Basaglia, M. C. Brant, T. Matencio and R. Z. Domingues, Powder Technology, 192 (2009) 352
24. S. D. Kim, J. J. Lee, H. Moon, S. H. Hyuna, J. Moona, J. Kimb and H. W. Lee, J. Power Sources, 169 (2007) 265
25. N. Ai, Z. Lu, K. Chen, X. Huang, X. Du and W. Su, J. Power Sources, 171 (2007) 489
26. M. Mogensen, N. M. Sammes and G. A. Tompsctt , Solid State Ionics, 129 (2000) 63
27. F. Donald Bloss, Crystallography and crystal chemistry
28. N. Q. Minh and T. Takahashi ,Science and Technology of Ceramic Fuel Cells, Elsevier Science B.V., Amsterdam, The Nertherlands, (1995)
29. C. Y. Fu, C. L. Chang, C. S. Hsu and B. H. Hwang , Mate. Chem. Phys., 91 (2005) 67
30. C. S. Hsu and B. H. Hwang, J. Electrochem. Soc., 153 (2006) A1478
31. P. Simner and M. D. Anderson , J. Am. Ceram. Soc., 87 (2004) 1471
32. C. Xia, W. Rauch, F. Chen and M. Liu, Solid State Ionics, 149 (2002)
33. Y. Liu, W. Rauch S. Zha and M. Liu, Solid State Ionics, 166 (2004) 261
34. C. Xia and M. Liu, Solid State Ionics, 144 (2001) 249
35. Koyama, C. J. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, K. Eguchi and H. Takahashi, J. Electrochem. Soc., 148 (2001) A795
36. Z. Shao and S.M. Halie, Nature, 431 (2004) 170
37. S. Li, Z. Lü, N. Ai , K. Chen and W. Su, J. Phys. Chem. Sol., 68 (2007) 1707
38. C. H. Chen, M. H. J. Emond, E. M. Kelder and B. Meester, J. Schoonman, J. Aerosol Sci., 30 (1999) 959
39. C. H. Chen, E. M, Kelder and P. J. J. M. van der Put, J. Schoonman, J. Mater. Chem., 6 (1996) 765
40. W. Balachandran, P. Miao and P. Xiao, J. Electrostatics, 50 (2001) 249
41. Z. C. Wang and K. b. Kim, Materials Letters, 62 (2008) 425
42. K. Tang and A. Gomez, Phys. Fluids, 6 (1994) 2317
43. K. Tang and A. Gomez, J. Colloid Interface Sci., 175 (1995) 326
44. K. Tang and A. Gomez, J. Colloid Interface Sci., 184 (1996) 500
45. L. Rayleigh, Philos. Mag., 14 (1882) 184
46. A. Jaworek and A. T. Sobczyk, J. Electrostat., 66 (2008) 197
47. A. M. Gana-Calvo, J. Davila and A. Barrero, J. Aerosol Sci., 28 (1997) 249
48. M. Cloupeau, J. Aerosol Sci., 25 (1994) 1143
49. M. Cloupeau and Prunet-Foch, J. Electrostat., 22 (1989) 135
50. M. Cloupeau and Prunet-Foch, J. Electrostat., 25 (1990) 165
51. M. Cloupeau and Prunet-Foch, J. Aerosol Sci., 25 (1994) 1021
52. D. Perednis, O. Wilhelm, S. E. Pratsinis and L. J. Gauckler, Thin Solid Films, 474 (2005) 84
53. A. J. Bard and L. R. Faulkener:Electrochemical methods- Fundamental and applications, 2nd.
54. C. Y. Fu, C. L. Chang, C. S. Hsu and B. H. Hwang, Materials Chem. Phys., 91 (2005) 28
55. C. H. Chen, C. L. Chang and B. H. Hwang, Materials Chem. Phys., 115 (2009) 478
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top