(3.238.130.97) 您好!臺灣時間:2021/05/14 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃聖碩
研究生(外文):Sheng-shuo Huang
論文名稱:高雙折射液體填充光子晶體光纖之分析與製作
論文名稱(外文):Analysis and Fabrication of Highly Birefringent Liquid-Filled Photonic Crystal Fibers
指導教授:于欽平
指導教授(外文):Chin-Ping Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:94
中文關鍵詞:雙折射光子晶體光纖
外文關鍵詞:BirefringencePhotonic crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近幾年來極化維持光纖已被廣泛的討論與研究,從早期的壓力式雙折射光纖演進到進期較為新穎的極化維持光子晶體光纖,不僅提升了雙折射的效率,更增加了許多優點,例如加大了模態面積及具備大頻寬的單模傳輸。在本論文中,我們提出了在光子晶體光纖中以不對稱的方式填入液體來設計一個可調式的雙折射液體填入光子晶體光纖。我們使用了一個有完美匹配層的有限差分頻域法來分析液體填入式的雙折射光子晶體光纖,成功\\\地分析出液體填入光子晶體光纖後的光學特性,其雙折射效益與傳統的極化光纖相比提升了數倍,在波長1.55 μm時可達到7.1 × 10-3的高度雙折射性,並且具備了可調的光電特性。
而在實驗的部份,我們引進了光子晶體光纖的封孔和校準的技術,在光子晶體光纖的兩側做封塞的動作,再以真空的方式將液體順利地填入光子晶體光纖中,成功地製作出雙折射液體填入光子晶體光纖。而我們也對該光纖作初步的遠場量測,在文中我們也會展示實驗的量測架構與未來努力的方向。
Polarization-maintaining fibers (PMFs) have been widely studied and discussed. Nowadays, a novel polarization-maintaining photonic crystal fiber (PMPCF) is proposed with many advantages, such as the large mode area and the single-mode transmission in a wide frequency range. In this thesis, we propose the birefringent liquid-filled PCF with the liquid asymmetrically infiltrated in the cladding region. The Yee-mesh-based finite-difference frequency-domain (FDFD) method is utilized to analyze the birefringent properties of the liquid-filled PCFs. Compared with traditional PMFs, our proposed PCF possesses larger birefringence about 7.1 × 10-3 at 1.55 μm with useful tunable properties.
In the experiment, we have successfully fabricated the birefringent liquid-filled PCF by using the selective blocking technique. The elliptical far field can be observed for our birefringent PCF. We also demonstrate the experiment setup for estimating the birefringence of our birefringent liquid- filled PCF.
1 Introduction
1.1 Motivations 1
1.2 Chapter Outline 4

2 Numerical Methods
2.1 Overview 11
2.2 Formulae of the FDFD Method 11
2.3 FDFD Method with PMLs 15
2.4 Index Averaging Method 20

3 Numerical Results of Birefringent Liquid-Filled Photonic CrystalFibers 25
3.1 Overview 25
3.2 Highly Birefringent Liquid-Filled PCFs 26
3.3 Loss-Reduced Birefringent Liquid-Filled PCFs30

4 Fabrication and Measurement of Birefringent Liquid-Filled Photonic Crystal Fibers
4.1 Fabrication 48
4.1.1 Tool Fiber and UV gel 49
4.1.2 Alignment Setup 49
4.1.3 Blocking Technique 50
4.1.4 Vacuum Filling Setup 50
4.2 Measurement
4.2.1 Experiment Setup 51
4.2.2 Measurement Result 52
4.2.3 Future work 53

5 Conclusions 66

Bibliography 67
[1]Birch, R. D., M. P. Varnham, D. N. Payne, and E. J. Tarbox, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron Lett., vol. 18, pp. 1036–1038, 1982.
[2]Birks, T. A., J. C. Knight, and P. St.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961–963, 1997.
[3]Bouwmans, G., L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an allsolid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express, vol. 21, pp. 8452–8459, 2005.
[4]Chew, W.C., and W. H. Weedon, “A 3-D perfectly matched medium from modified Maxwell’s equation with stretched coordinates,” Microwave Optical Technol. Lett., vol. 7, pp. 599–604, 1994.
[5]Couny, F., F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett., vol. 31, pp. 3574–3576, 2006.
[6]Folkenberg, J. R., M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode photonic crystal fiber,” Opt. Lett., vol. 12, pp. 956–960, 2004.
[7]Hosaka, T., K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarisation fibres with asymmetrical strain birefringence,” Electron. Lett., vol. 17, pp. 530–531, 1981.
[8]John, S., “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987.
[9]Knight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807–809, 2000.
[10]Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476–1478, 1998.
[11]Knight, J. C., T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547–1549, 1996.
[12]Litchinitser, N. M., A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett., vol. 27, pp. 1592–1594, 2002.
[13]Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “ Improved large-mode-area endlessly single-mode photonic crystal fibers,” Opt Lett., vol. 28, pp. 393–395, 2003.
[14]Nielsen, M. D., N. A. Mortensen, J. R. Folkenberg, and A. Petersson, “Improved all-silica endlessly single-mode photonic crystal fiber,” Optical Fiber Communications Conference, 2003.
[15]Okamoto, k. and T. Hosaka, “Polarization-dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett., vol. 12, pp. 290–292, 1987.
[16]Okamoto, K., and J. Noda, “Spectral band-elimination filter consisting of concatenated dual-core fibers,” Electron. Lett., vol. 22, pp. 211–212, 1986.
[17]Okamoto, K., H. Miyazawa, J. Noda, and M. Saruwatari, “Noveloptical isolator consisting of a YIG spherical lens and PANDA-fiber polarizers,” Electron. Lett., vol. 21, pp. 36–38, 1985.
[18]Okoshi, T., N. Fukuya, and K. Kikuchi, “New polarization-state control device: Rotatable fiber cranks,” Electron. Lett., vol. 21, pp. 895–896, 1985.
[19]Onight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous Dispersion in Photonic Crystal Fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807–809, 2000.
[20]Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt Lett, vol. 25, pp. 1325–1327, 2000.
[21]Pekel, U. and R. Mittra, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 84–86, 1995.
[22]Rappaport, C. M., “Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 90–92, 1995.
[23]Sasaki, Y., T. Hosaka, K. Takada, and J. Noda, “8-km long polarization-maintaining fiber with highly stable polarization state,” Electron Lett., vol. 19, pp. 792–794, 1983.
[24]Shibata, N., K. Okamoto, K. Suzuki, and Y. Ishida, “Polarization-mode properties of elliptical-core fibers and stress-induced birefringent fibers,” J. Opt. Soc. Amer., vol. 73, pp. 1792–1798, 1983.
[25]Wolinski, T. R., A. Czapla, S. Ertman, M. Tefelska, A. J. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, “ Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt Quant Electron, vol. 39, pp.1021–1032, 2007.
[26]Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.
[27]Yee, K. S., “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 3, pp. 302–307, 1966.
[28]Yokohama, I., K. Okamoto, and J. Noda, “ Fiber-optic polarizing beam splitter employing birefringent fiber coupler,” Electron Lett., vol. 21, pp. 415–416, 1985.
[29]Yu, C. P., and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron., vol. 36, pp. 145–163, 2004.
[30]Zhu, Z., and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express, vol. 10, pp. 853–864, 2002.
[31]Zografopoulos, D. C., “Polarization Properties of liquid-crystal infiltrated photonic crystal fibers,” ICTON, 2008.
[32]Zografopoulos, D. C., E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. Lightwave Technol., vol. 24, pp. 3427–3432, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔