跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳瑞彬
研究生(外文):Jui-pin Wu
論文名稱:分佈式電致光吸收調變器整合半導體光放大器之特性與應用
論文名稱(外文):Characterizations and Applications of Distributed ElectroabsorptionModulator Integrated Semiconductor Optical Amplifier
指導教授:邱逸仁邱逸仁引用關係
指導教授(外文):Yi-Jen Chiu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:67
中文關鍵詞:電致光吸收調變器半導體光放大器
外文關鍵詞:Electroabsorption ModulatorSemiconductor Optical Amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本 論 文 研 究 重 點 為 分 佈 式 電 致 光 吸 收 調 變 器(Electroabsorption Modulator ; EAM)整合半導體光放大器(Semiconductor Optical Amplifier;SOA)之特性分析,在這次的工作中我們發現利用分佈式效應在光調變與光放大中有許多有利的優點,如有利於高速調變、較佳的微波特性、較低的雜訊係數與頻擾係數, 相當的符合光纖通訊系統的需求。
由 於 EAM 的高速、高消光比、體積小與易於積體化等優點, 已廣泛的應用在光纖通訊系統中; 然而由於EAM 波導結構形成很高的集散電容,造成微波反射過大與高頻損耗過大,在高速調變造成調變效率降低;在分佈式結構中,EAM利用高阻抗傳輸線(High impedance transmission line; HITL)整合SOA 不僅可以改善阻抗匹配更可提供光增益,且在重複放大與調變過程中可以降低SOA 自發性放射所產生的雜訊並得到較低的雜訊係數;而應用SOA 增益飽和特性更可以補償由EAM 所產生的頻擾, 在分佈式結構中也實現了此項特性。
在 本 文 中 之 工 作,我們比較分佈式EAM-SOA 與傳統單段EAM-SOA, 分佈式結構將可以改善頻寬與降低雜訊係數;在實驗上,由於分佈式效應改善阻抗匹配,-3dB 頻寬大於40GHz,因此並完成40Gbit/s 傳輸系統;且在10Gbit/s 傳輸系統中,由於分佈式元件有較低的雜訊係數,因此在誤碼率量測有較佳的3dB 靈敏度。
In this paper, a distributed Electroabsorption Modulator (EAM) monolithically integrated with Semiconductor Optical Amplifier (SOA) is analyzed. Using the distributed effects on the optical modulation and amplification, several advantages have been found in this work, such as high-speed modulation, microwave performance, low nose properties, and low chirp, which is quite fitted to the requirements of optical fiber communications.
EAMs have been widely used due to high-speed, high extinction ratio, the compactness, and the capability of integration. However, due to the highly loaded capacitance in the waveguide, EAMs generally suffer from high microwave reflection and thus low modulation efficiency during high-speed modulation. By the distributed structure, SOA-integrated EAMs can not only enhance the impedance match by adopting distributed high impedance transmission line (HITL), but also offer optical gain. By the optical processing scheme of re-amplification and re-modulation, it also has been found that the extra amplified spontaneous emission (ASE) noise coming from SOA can be reduced to get lower noise figure (NF). Appling the saturation on SOA, the positive frequency chirp of EAM can be compensated to give overall low chirp. By the distributed structure, chirp compensation has been realized by this characterization.
In this work, the distributed EAM-SOA scheme and the traditional single section EAM-SOA scheme are used for comparison, higher speed and lower NF are observed in distributed scheme. Due to impedance matching improvement in distributed scheme, a -3dB bandwidth of higher than 40GHz and 40Gbit/s data transmission is achieved, while a 15GHz of -3dB bandwidth is obtained in single device. Also, in 10Gbit/s data transmission, a 3dB lower of power penalty occurs in distributed scheme, while the lower NF is the mainly dominating mechanism.
目錄 1
致謝 3
中文摘要 4
英文摘要 5
第一章 簡介 6
第二章 微波特性 11
2.1 前言 11
2.2 微波特性分析 13
2.2.1 微波模型 13
2.2.2 微波損耗 14
2.2.3 駐波特性 15
2.2.4 頻譜響應 18
2.2.5 速度不匹配 22
2.3 實驗結果 23
第三章 雜訊特性 28
3.1 前言 28
3.2 雜訊係數分析 29
3.3 雜訊係數量測 33
3.4 誤碼率量測 35
第四章 頻擾 38
4.1 前言 38
4.2 頻擾係數與長距離光纖傳輸 38
4.3 .EAM與SOA之頻擾係數 39
4.4 頻擾係數量測 40
第五章 結論與未來工作 50
5.1 總結 50
5.2 未來工作 50
5.2.1 In-Line訊號重整應用 50
5.2.2頻擾補償長距離通訊系統 53
5.2.3雙向被動網路系統 54
第六章 參考資料與文獻 56
附錄A光放大器之Noise Figure 60
附錄B EAM-SOA之Noise Figure 64
[1]Govind P. Agrawal, “Fiber-Optic Communication Systems, Third Edition”
[2]Govind P. Agrawal, “Lightwave Technology, Telecommunication Systems”
[3]http://www.jdsu.com/index.html
[4]http://www.nel-world.com/index.html
[5]http://www.cyoptics.com/
[6]Fumio Koyama, “Frequency Chirping in External Modulator,” Journal of Lightwave Technology, vol. 6, no. 1, January 1988
[7]H. Q. Hou, “Nearly Chirp-Free Electroabsorption Modulation Using InGaAs-InGaAlAs-InAlAs Coupled Quantum Wells,” IEEE Photonics Technology Letters, vol. 7. no. 2. February 1995
[8]Tsu-Hsiu Wu, “High-Speed (60 GHz) and Low-Voltage-Driving Electroabsorption Modulator Using Two-Consecutive-Steps Selective-Undercut-Wet-Etching Waveguide,” IEEE Photonics Technology Letters, vol. 20, no. 14, July 15, 2008
[9]Hideki Fukano, “Low Chirp Operation of 40 Gbit/s Electroabsorption Modulator Integrated DFB Laser Module With Low Driving Voltage,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 5, September/October 2007
[10]L. Zhang, I. Kang, “Reduced Recovery Time Semiconductor Optical Amplifier Using p-Type-Doped Multiple Quantum Wells,” IEEE Photonics Technology Letters, vol. 18, no. 22, November 15, 2006
[11]Hideki Fukano, “Very-Low-Driving-Voltage Electroabsorption Modulators Operating at 40 Gb/s,” Journal OF Lightwave Technology, vol. 24, no. 5, May 2006
[12]K. Asaka, “Lossless Electroabsorption Modulator Monolithically Integrated With a Semiconductor Optical Amplifier and a Passive Waveguide,” IEEE Photonics Technology Letters, vol. 15, no. 5, May 2003
[13]J. E. Johnson, “Monolithically Integrated Semiconductor Optical Amplifier and Electroabsorption Modulator with Dual-Waveguide Spot-Size Converter Input,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, January/February 2000
[14]Govind P. Agrawal, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE Journal of Quantum Electronics. vol. 25, no.11, November 1989
[15]Toshio Watanabe, “Transmission Performance of Chirp-Controlled Signal by Using Semiconductor Optical Amplifier,” Journal of Lightwave Technology, vol. 18, no. 8, August 2000
[16]Javier Marti, “Experimental Reduction of Dispersion-Induced Effects in Microwave Optical Links Employing SOA Boosters,” IEEE Photonics Technology Letters, vol. 13, no. 9, September 2001
[17]Tingye Li, “The Impact of Optical Amplifiers on Long-Distance Lightwave Telecommunications,” Proceedings of the IEEE, vol. 81, no. 11. November 1993
[18]Shiro Ryu, “Over 1000 km FSK Heterodyne Transmission System Experiment Using Erbium-Doped Optical Fiber Amplifiers and Conventional Single- Mode Fibers,” IEEE Photonics Technology Letters, vol. 2, no. 6, June 1990
[19]Y.J. Chiu, “Novel Monolithically Chain Integrated Semiconductor Optical Amplifiers and electroabsorption modulators for high-speed optical modulation,” Lake Buena Vista, Florida, LEOS2007
[20]Ralph Spickermann, “In traveling wave modulators which velocity to match?,” IEEE LEOS’96, Bosyon, MA, pp.97-98 vol.2, 1996
[21]Shengzhong Zhang, “Traveling-wave Electroabsorption Modulators,” University of California, Santa Barbara, Ph.D. Dissertation, 1999
[22]Peter A. Rizzi, “Microwave Engineering Passive Circuit”
[23]Reinmut K. Hoffman, “Handbook of Microwave Integrated Circuits”
[24]Grant R. Fowles, “Introduction to Modern Optics,” Second Edition
[25]Douglas M. Baney, “Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers,” Optical Fiber Technology 6, 122-154 (2000)
[26]Tristan Briant, “Accurate Determination of the Noise Figure of Polarization-Dependent Optical Amplifiers: Theory and Experiment,” Journal of Lightwave Technology, vol. 24, no. 3, March 2006
[27]D. Derrickson (Ed), “Fiber Optic Test and Measurement,” Prentice-Hall, Englewood Cliffs, NJ, 1998
[28]J. Weiner, “Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum,” Appl. Phys. Lett., vol. 50, pp. 842-844, 1987
[29]F. Devaux, “Simple Measurement of Fiber Dispersion and of Chirp Parameter of Intensity Modulated Light Emitter,” Journal of Lightwave Technology, vol. 11, no. 12, December 1993
[30]Pak S. Cho, “All-Optical 2R Regeneration and Wavelength Conversion at 20 Gb/s Using an Electroabsorption Modulator,” IEEE Photonics Technology Letters, vol. 11, no. 12, December 1999
[31]Hidekazu Takeda, “Investigation of the Input Power Dynamic Range for a Cross Gain Modulation Type Wavelength-Converter-Cascaded Optical Regenerator,” Electronics and Communications in Japan, Part 2, Vol. 88, No. 12, 2005
[32]Mingshan Zhao, “Demonstration of Extinction Ratio Improvement From 2 to 9 dB and Intensity Noise Reduction With the MZI-GCSOA All-Optical 2R Regenerator,” IEEE Photonics Technology Letters, vol. 14, no. 7. July 2002
[33]Thanh Nam Nguyen, “Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering,” Optics Express, Vol. 14, No. 5, March 2006
[34]Masayuki Matsumoto, “Efficient all-optical 2R regeneration using self phase modulation in bidirectional fiber configuration,” Optics Express, Vol. 14, No.23, November 2006
[35]Peter Ohlen, “Noise Accumulation and BER Estimates in Concatenated Nonlinear Optoelectronic Repeaters,” IEEE Photonics Technology Letters, vol. 9, no. 7, July 1997
[36]Rainer Hainberger, “BER Estimation in Optical Fiber Transmission Systems Employing All-Optical 2R Regenerators,” Journal of Lightwave Technology, vol. 22, no. 3, March 2004
[37]Filip Öhman, “Modeling of Bit Error Rate in Cascaded 2R Regenerators,” Journal of Lightwave Technology, vol. 24, no. 2, Feberuary 2006
[38]Hiroki Takesue, “Wavelength Channel Data Rewrite Using Saturated SOA Modulator for WDM Networks With Centralized Light Sources,” Journal of Lightwave Technology, vol. 21, no. 11, November 2003
[39]Wooram Lee, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technology Letters, vol. 17, no. 11, November 2005
[40]Josep Prat, “Optical Network Unit Based on a Bidirectional Reflective Semiconductor Optical Amplifier for Fiber-to-the-Home Networks,” IEEE Photonics Technology Letters, vol. 17, no. 1, January 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊