(3.238.96.184) 您好!臺灣時間:2021/05/08 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏宏戎
研究生(外文):Hung-jung Yan
論文名稱:利用量子井熱混合方式製作波長匹配之電致吸收光調變器與半導體光放大器
論文名稱(外文):Integration of Electroabsorption Modulators and Semiconductor Optical Amplifiers by Quantum Well Intermixing for Wavelength matching
指導教授:邱逸仁邱逸仁引用關係
指導教授(外文):Yi-Jen Chiu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:56
中文關鍵詞:量子井熱混合
外文關鍵詞:Quantum Well Intermixing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文中,以量子井熱混合擴散方式-內部晶格擴散,來調整材料能隙以達到光積體整合的最佳化,並以整合電致吸收光調變器與半導體光放大器為研究。藉由該擴散機制,可區域性調整材料能隙,使單一晶片中光調變器操作波長往短波長移動,又稱之為藍位移。而光放大器仍維持材料操作波長,如此可使得光調變器整合光放大器元件有更好的性能。
製作上先於晶片上電致吸收光調變器區域濺鍍400nm的二氧化矽做為吸附層,接著使用快速高溫熱退火系統使量子井與位能障間原子發生擴散。元件製程部分,P型金屬與N型金屬分別為鈦/鉑/金(Ti/Pt/Au)與鎳/金鍺合金/鎳/金(Ni/AuGe/Ni/Au)做為歐姆接觸,並底切蝕刻主動波導來達到高速傳輸,最後進行平坦化製程並蒸鍍鈦/金作為共平面電極。經量測光電流頻譜,光調變器區域有10nm的藍位移效果。元件直流分析方面,光調變器調變效率可達15dB/V,消光比兩伏為20dB;光放大器增益為3dB且最大增益波長為1540nm。微波特性方面,整合元件3dB頻寬也可達20GHz。實驗結果顯示,本研究成功地在不使用重複磊晶的方式達到最佳化光積體整合型元件。
In this work, a quantum well intermixing(QWI) technology, called impurity free vacancy diffusion(IFVD), is used to do the bandgap engineering in an optoelectronic monolithic integration. The monolithic integration of SOAs and EAMs is taken as an example. By IFVD, the transition energy levels of EAM quantum wells can be shifted to shorter wavelength regime, while SOA quantum wells are kept the same. Therefore, the overall SOA-integrated EAM efficiency can be improved.
A 400nm thick SiO2 is sputtered at the EAM regions to locally create defects in the surface of pin InGaAsP/Imp layer structure. Rapid thermal Annealing (RTA) technique at 850oC is then used to inter-diffuse the atom of quantum wells. A SOA-integrated EAM is fabricated on such template. Ti/Pt/Au and Ni/AuGe/Ni/Au are used for p-type and n-type metallization. An optical waveguide structure is defined by selective undercut-etching active region. The PMGI is spun for planarization and bridging. A Ti/Au is finally deposited as microwave coplanar waveguide. A DC measurement of photocurrent spectrum is performed to examine the wavelength shift. A 10nm shift is found between EAM and SOA regions. Modulation efficiency of 15dB/V with extinction ratio of higher than 20dB is observed in EAM device. And the optical gain of SOA is found as 3dB at 1540nm excitation wavelength. -3dB bandwidth of 20GHz is obtained. In comparison with sample without intermixing, the same results are achieved in intermixing sample, suggesting no regrowth processing is needed for obtaining the same quality of optoelectronic integration.
中文摘要 2
英文摘要 3
致謝 4
第一章 簡介 8
1.1 前言 8
1.2 研究動機 8
1.3 材料能隙工程 10
1.4 論文架構 13
第二章 設計理論與計算 14
2.1 熱混合擴散效應 14
2.2 .EAMSOA工作波長匹配 19
2.3 計算熱混合擴散之量子井 19
2.3.1 熱混合擴散效應下能帶結構的改變 20
2.3.2 量子井波函數與基態能階計算 24
第三章 熱混合擴散與整合元件之方法與製作 35
3.1 熱混合擴散製程 35
3.2 整合元件製程 36
3.2.1 離子佈植與蒸鍍P型金屬 36
3.2.2 濕蝕刻P型被動光波導 38
3.2.3 底切蝕刻主動波導 40
3.2.4 蒸鍍N型金屬與定義絕緣層 41
3.2.5 平坦化製程 42
3.2.6 蒸鍍共平面電極 44
3.3 製程結論與檢討 45
第四章 元件特性量測與分析 45
4.1 半導體電流對電壓曲線結論 45
4.2 .EAMSOA整合元件直流分析 45
4.3 .EAMSOA整合元件微波量測 50
第五章 結論 53
第六章 參考資料與文獻 54
[1] B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, High-Speed (>40GHz) Integrated Electro-absorption Modulator Based on Identical Epitaxial Layer Approach,” IEEE 2005.
[2] P. N. K. Deenapanray, H. H. Tan, M. I. Cohen, K. Gaff, M. Petravic, and C.Jagadish, “Silane Flow Rate Dependence of SiOx Cap Layer Induced Impurity-Free Intermixing of GaAs/AlGaAs Quantum Wells,” Journal of The Electrochemical Society, Vol.147, 2000.
[3] D. L. Green and E. L. Hu, ”Effect of superlattices on the low-energy ion-induced damage in GaAs/Al(Ga)As structures,” J. Vac. Sci. Technol. B12(6),Nov/Dec 1994.
[4] H. S. Diie and T. Mei, ”Plasma-Induced Quantum Well Intermixing for Monolithic Photonic Integration,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 2, March/April 2005.
[5] H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, ”Experimental and Theoretical Analysis of Argon Plasma-Enhanced Quantum-Well Intermixing,” IEEE Journal of Quantum Electronics, Vol. 40, No. 2, February 2004.
[6] S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, ”Photonic Integrated Circuits Fabricated Using Ion Implantation,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 4, July/August 1998.
[7] O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, “A universal damage induced technique for quantum well intermixing,” Appl. Vol. 72, 5 Number /2 February 1998.
[8] I. Gontijo, T. Krauss, J. H. Marsh, and R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE Journal of Quantum Electronic, vol. 30, May 1994.
[9] L.J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, and W.E. Plano, “Effects of dielectric encapsulation and As overpressure on Al-Ga interdiffusion in AlGaAs/GaAs quantum well heterostructures,” Journal Appl. Phys. 61(4), 15 February 1987.
[10] O. BS, M. K, Street MW, ”Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion” IEEE Journal of quantum electronic Vol. 33 , October 1997.
[11] S. SK, Y. DH, Y. KH, ” Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE Journal of Selected Topics in Quantum Electronics Vol.4, July/August 1998.
[12] 16]J. E. Epler, F.A. Ponce, F.J. Endicott, and T.L. Paoli, “Layer disordering of GaAs/AlGaAs superlattices by diffusion of laser-incorporated Si,” J. Appl. Phys. 64(7), 1 October 1988.
[13] E. H. Li, and B. L. Weiss, “Analytical Solution of the Subbands and Absorption Coefficients of AlGaAs/GaAs Hyperbolic,” IEEE Journal of quantum electronic, Vol. 29, No. 2. February 1993
[14] H. Kroemer, “Quantum Mechanics: For Engineering, Materials Science and Applied Physics, Prentice Hall, 1994.
[15] 李政鍵 , Unsymmetry Spiked-Quantum Well Design and Electroabsorption Modulators Based on the InAlAs/InGaAlAs Material System,2004.
[16] R. JW, J. LA, S. EJ,” 40 Gbit/s photonic receivers integrating UTC photodiodes with high- and low-confinement SOAs using quantum well intermixing and MOCVD regrowth,” electronic letter Vol.42, 3 August 2006.
[17] V. Hofsass, J. Kuhn, C. Kaden, “Optical integration of laterally modified multiple quantum well structures by implantation enhanced intermixing to realize gain coupled DFB lasers,” NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, Vol. 104, December 1995.
[18] D. Hofstetter, B. Maisenholder, and H. P. Zappe, “Quantum-well intermixing for fabrication of lasers and photonic integrated circuits,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, July/August 1998.
[19]張智杰, Wavelength Match Chain-integrated EAM and SOA
Using Quantum Well Intermixing,2008.
[20] J. Minch, S. H. Park, T. Keating, and S. L. Chuang,“Theory and Experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well Lasers, ” IEEE Journal of Quantum Electronics, Vol.35, No.5,May 1999.
[21] D. M. Baney, P. Gallion “Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers,” Optical Fiber Technology, June 2000.
[22] E. H. Li, ”Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures, Physica E:Low-dimensional Systems and Nanostructures, Vol. 5, 1 March 2000.
[23] S. L. Chuang,“Physics of Optoelectronic Devices, John Wiley & Sons,Inc,1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔