(3.227.0.150) 您好!臺灣時間:2021/05/06 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張智淵
研究生(外文):Chih-Yuan Chang
論文名稱:射頻濺鍍沉積氧化鋅鋁透明導電膜之研究
論文名稱(外文):Investigation of transparent conductive ZnO:Al thinfilms deposited by RF sputtering
指導教授:賴聰賢
指導教授(外文):Tsong-Sheng Lay
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:射頻濺鍍氧化鋅鋁
外文關鍵詞:AZORF Sputtering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:126
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對透明導電氧化物氧化鋅鋁(ZnO:Al)材料特性分析,因其兼具透明與導電的特性,可廣泛地應用至半導體光電產業如:平面顯示器、太陽能電池、及發光二極體等元件。首先以射頻濺鍍系統將氧化鋅鋁鈀材(ZnO:Al2O3=98wt%:2wt%)濺鍍於矽及光學玻璃基板上,形成氧化鋅鋁透明導電膜,再經過適當的熱處理得到較好結晶性。
實驗主要針對不同濺鍍參數(射頻功率、背景壓力、氬流量及基板溫度)及熱處理條件(溫度及時間)對氧化鋅鋁薄膜在不同基板上電性及光學性質之影響,以霍爾量測系統,量測薄膜導電特性、以紫外光/可見光分光光譜儀系統量測薄膜穿透特性、以X-ray繞射系統觀察薄膜結晶特性、以元素分析儀(EDS),量測薄膜成分元素。
實驗得到較佳的濺鍍條件: 矽及光學玻璃基板室溫下、射頻功率100W、系統背景壓力3mTorr及氬流量5sccm,再經RTA回火600℃ N2 2min,矽基板薄膜的電阻率: 6.8×10-4(Ω-cm);而光學玻璃基板量測光學性質方面,其as-grown及不同回火溫度(400、500、600℃)下,光波長400~1800nm基乎都有85%以上都高穿透率。
使用較佳濺鍍條件加上矽基板加熱250℃下沉積AZO薄膜,其as-grown條件下得到比矽基板未加熱時較高導電率,薄膜電阻率: 2.5×10-3(Ω-cm),後續RTA回火不同溫度及時間後導電率均無提升的趨勢,因此之後應用在p型GaAs上,只需基板加熱250℃,將不再依賴後續RTA高溫回火,即能得到較佳的導電率。
實驗得到AZO薄膜在p型GaAs的歐姆接觸的較佳條件,進而應用在III-V族GaAs太陽能電池上,當作收光面(p型GaAs)的電極。
實驗所使用的晶片是實驗室用MBE自行成長,編號C239 p-i-n GaAs quantum dots in well (2x3)的結構、編號C240 p-i-n GaAs quantum dots (1x3)的結構及編號C243 p-i-n GaAs quantum dots (2x3)的結構,與一般太陽能電池使用跤指狀金屬電極特性比較,編號C240有較高的填充因子: 52%;編號C243有較大的光電流密度: 11.6(mA/cm2)。
In this thesis, we focus on the properties of Al-doped ZnO (AZO) thin films for opto-electronic applications. AZO films were prepared by radio-frequency sputtering on silicon and optical glass substrates with 98wt% ZnO and 2wt% Al2O3 alloy target. AZO films were prepared under various deposition parameters (RF power, background pressure, Ar flow, and substrate temperature). The optimal parameters for the conductive and transparent AZO films are power = 100W, pressure = 3mTorr, Ar flow = 5sccm, and substrate temperature 250℃. The film exhibits the resistivity(ρ) of 2.5×10-3 Ω-cm and 85% transparency in the 400-1800nm range.
To find out optimum substrate temperature for the AZO film on p-GaAs (p=2×1018), the samples were deposited at various temperatures followed by annealing at 400℃ for 30sec. The current-voltage (I-V) characteristics were measured. AZO films make good ohmic contact to p-GaAs to act as an electrode layer.
InGaAs quantum-dot solar cells of AZO contact layers have been fabricated. A high filling factor of 52% is achieved.
第一章 簡介 1
參考文獻 3

第二章 文獻回顧 5
2.1 透明導電膜 5
2.2 氧化鋅性質 6
2.2.1 ZnO 6
2.2.2 ZnO:Al 晶格結構 8
2.2.3 ZnO:Al 電性 9
2.2.4 ZnO:Al 光學性質 10
2.3 薄膜成核成長 10
2.4 太陽能電池原理 12
2.4.1 太陽光譜 12
2.4.2 太陽能電池基本結構與工作原理 14
參考文獻 24

第三章 實驗原理與儀器架構 26
3.1 射頻濺鍍 ( RF Sputtering ) 26
3.2 快速高溫回火 ( RTA ) 29
3.3 霍爾效應量測系統 ( Hall effect measurement system ) 30
3.4 紫外線可見光光譜儀 ( Ultraviolet Visible Spectrometer,
UV-Vis ) 31
3.5 X光繞射 ( X-Ray Diffraction,XRD ) 31

第四章 實驗方法與步驟 34
4.1氧化鋅鋁(AZO)薄膜製程 34
4.1.1樣品清洗 34
4.1.2射頻濺鍍製程 34
4.2快速高溫回火(RTA)製程 35
4.2.1改變回火的溫度 36
4.2.2改變回火的時間 36
4.3薄膜特性分析 36
參考文獻 38

第五章 實驗結果及討論 39
5.1基板室溫下濺鍍沉積AZO薄膜 39
5.1.1濺鍍沉積在矽基板上之AZO性質 39
5.1.2濺鍍沉積在光學玻璃基板上之AZO性質 40
5.2基板加熱下濺鍍沉積AZO薄膜 51
5.3 AZO薄膜與p型砷化鎵基板歐姆接觸 62
5.4 AZO薄膜應用於III-V族GaAs太陽能電池 65
參考文獻 77

第六章 結論及未來展望 78
ch1
[1] David S. Ginley and Clark Bright, MRS Bulletin, 25(8) 15-18 (2000).
[2] K. L. Chopra, Applied Physics Letters, 7(5) 140-141 (1965).
[3] E. Ahilea and A. A. Hirsch, Journal of Applied Physics, 42(13) 5601-5608 (1971).
[4] D. I. Kenndey, R. E. Hayes and R. W. Alsford, Journal of Applied Physics, 38 1986 (1966).
[5] S. Major, S. Kumar, M. Bhatnagar and K. L. Chopra, Applied Physics Letters, 49(7) 394-396 (1986).
[6] I. Hamberg and C.G. Granqvist, Journal of Applied Physics, 60 R123-R159 (1986).
[7] Z. C. Jin, I. Hamberg and C.G. Granqvist, Journal of Applied Physics, 64 5117-5131 (1988).
[8] M. Purica, E. Budianu, E. Rusu, M. Danila and R. Gavrila, Thin Solid Films, 403-404 485-488 (2002).
[9] Y. Kashiwaba, K. Sugawara, K. Haga, H. Watanabe, B. P. Zhang and Y. Segawa, Thin Solid Films, 411 87-90 (2002).
[10] K. C. Hsiao, S. C. Liao and Y. J. Chen, Material Science and Engineering A, 447 71-76 (2007).
[11] G. G. Valle, P. Hammer, S. H. Pulcinelli and C. V. Santilli, Journal of the European Ceramic Society, 24 1009-1013 (2004).
[12] R. B. H. Tahar, Journal of the European Ceramic Society, 25 3301-3306 (2005).
[13] H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed and H. A. Mohamed, Journal of Physics and Chemistry of Solids, 67 1823-1829 (2006).
[14] D. R. Sahu, Shin-Yuan and Jow-Lay Huang, Microelectronic Journal, 38 245-250 (2007).
[15] H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, Thin Solid Films, 445 263-267 (2003).
[16] R. K. Shukla, Anchal Srivastava, Atul Srivastava and K. C. Dubey, Journal of Crystal Growth, 294 427-431 (2006).
[17] M. A. Martinez, J. Herrero and M. T. Gutierrez, Solar Energy Materials and Solar Cells, 45 75-86 (1997).
[18] Jyh-Ming and B. S. Tsai, Materials Chemistry and Physics, 72 273-277 (2001).
[19] Kh. A. Abdullin, A. B. Aimagambetov, N. B. Beisenkhanov, A. T. Issova, B. N. Mukashev and S. Zh. Tokmoldin, Material Science and Engineering B, 109 241-244 (2004).
[20] Hyungduk Ko, Weon-Pil Tai, Ki-Chul Kim, Sang-Hyeob Kim, Su-Jeong Suh, Young-Sung Kim, Journal of Crystal Growth, 277 352-358 (2005).
[21] Byeong-Yun Oh, Min-Chang Jeong, Woong Lee and Jae-Min Myoung, Journal of Crystal Growth, 274 453-457 (2005).

ch2
[1].H. Sheng,1 N.W. Emanetoglu,1 S. Muthukumar,2 B.V. Yakshinskiy,3
S. Feng,1 and Y.Lu1, J.Electron Mater, Vol.32, p.9, April 1 2003.
[2].Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl.Phys.Lett.
Vol.77,p.11 , 11 September 2000.
[3].Han-Ki Kim, Kyoung-Kook Kim, Seong-Ju Park, and Tae-Yeon
Seong , J.Appl.Phys.Vol.94, p.6 ,15 September 2003.
[4].Y.G. Wanga, S.P. Laua,, X.H. Zhangb, H.H. Hngc, H.W. Leea, S.F.
Yua, B.K. Taya , Journal of Crystal Growth ,Vol.259 ,p.335–342 , 31
July 2003.
[5].Y.R. Ryu, S. Zhu,1, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W.
White , Journal of Crystal Growth, Vol.216 , p.330-334 ,21 March
2000.
[4] M. S. Wu, A. Azuma, T. Shiosaki and A. Kawabata, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 36, Jul, p 442-445, 1989.
[5] W. Water and S. Y. Chu, Materials Letters, vol. 55, pp. 67, 2002.
[6] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, Vacuum, vol. 59, pp. 538, 2000 .
[7] Y. Igasaki and H. Saito, Thin Solid Films, vol. 199, pp. 223, 1991.
[8] Hu-Jie Jin, Min-Jong Song and Choon-Bae Park, Physica B 404 (2009) 1097–1101
[9] Hong Seong Kang, Gun Hee Kim, Dong Lim Kim, Hyun Woo Chang,
Byung Du Ahn, and Sang Yeol Lee, APPLIED PHYSICS LETTERS 89, 181103 (2006)
[10] J. Hu and R. G. Gorden, J. Appl. Phys., vol. 71, pp. 880, 1992.
[11] F. Shinoki and A.Itoh, J. Appl. Phys., vol. 46, pp. 3381,1975.

ch4
[1] Chitra Agashe, Oliver Kluth, Gunnar Schope, Hilde Siekmann, Jurgen Hupkes, Bernd Rech, Thin Solid Films 442 (2003) 167–172
[2] F. Couzinié-Devy , N. Barreau, J. Kessler, Thin Solid Films 516 (2008) 7094–7097
[3] M. Selmi, F. Chaabouni, M. Abaab, B. Rezig, Superlattices and Microstructures 44 (2008) 268–275
[4] A.M.K. Dagamseh, B.Vet, F.D. Tichelaar, P. Sutta, M. Zeman, Thin Solid Films 516 (2008) 7844–7850

ch5
[1] Chitra Agashe, Oliver Kluth, Gunnar Schope, Hilde Siekmann, Jurgen Hupkes, Bernd Rech, Thin Solid Films 442 (2003) 167–172
[2] J.H. YUN, J.H. LIM, S.J. PARK, J.H. JANG, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on Volume: 1, (2006) 823-825
[3] E Havard, T Camps, V Bardinal, L Salvagnac, C Armand, C Fontaine and S Pinaud, Semicond. Sci. Technol. 23 (2008) 035001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔