[1] A.K. Vasudevan, R.D. Doherty, “Aluminum alloys – contemporary research and applications”, Academic press, (1989).
[2] 陳俊豪,「部分退火冷軋鋁合金之拉伸研究」,中山大學碩士論文,(2007)。[3] Y.J. Li, L.Arnberg, “Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization”, Mater. Sci. Eng. A, 347, (2003), 130.
[4] S.P. Chen, N.C.W. Kuijpers, S.V.D. Zwaag, “Effect of micro- segregation and dislocations on the nucleation kinetics of precipitation in AA3003”, Mater. Sci. Eng. A, 341, (2003), 296.
[5] A.L. Dons, Trondheim, Yanjun Li, Sunndalsφra, S. Benum, Mosjφen, C. marioara, Trondheim, A. Johansen, A. Håkonsen, Ch.J. Simensen, Oslo, E.K. Jensen,Kristiansand, “Homogenisation of AA3103 and AA3003 Part II: Heating”, Alumium, 81, (2005), 1150.
[6] V.M. Segal, “Materials processing by simple shear”, Mater. Sci. Eng. A, 197, (1995), 157.
[7] K. Nakashima, Z. Horita, M. Nemoto, T. G. Langdon, “Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing”, Acta Mater., 46, (1998), 1589.
[8] V.M. Segal, K.T. Hartwig, R.E. Goforth, “In situ composites processed by simple shear”, Mat. Sci. Eng., A224, (1997), 107.
[9] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials”, Scripta Mater., 35, (1996), 143.
[10] M. Furukawa, Z. Horita, T.G. Langdon, “Factors influencing the shearing
61
patterns in equal-channel angular pressing”, Mater. Sci. Eng. A, 332, (2002), 97.
[11] S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, “Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion”, Metal. Trans. A, 28A (1997) 1047.
[12] N. Tsuji, Y, Ito, Y Saito, Y Minamino, “Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing”, Scripta Mater., 47 (2002) 893.
[13] C.Y. Yu, P.W. Kao, C.P. Chang, “Transition of tensile deformation behaviors in ultrafine-grained aluminum”, Actr Mater., 53 (2005) 4019. [14] M.A. Meyers, K.K. Chawla, “Mechanical behavior of materials”, (1996) 270.
[15] J.W. Wyrzykowski, M.W. Grabski, “Lueders deformation in ultrafine- grained pure aluminium”, Mater. Sci. Eng., 56 (1982) 197.
[16] N. Tsuji, Y, Ito, Y Saito, Y Minamino, “Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing”, Scripta Mater., 47 (2002) 893.
[17] R.E. Reed-Hill, “Physical metallurgy principles”, 3rd (1992) 286.
[18] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, “Enhanced tensile ductility of an ultra-fine-grained aluminum alloy”, Scripta Mater., 58 (2008) 163.
[19] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, “Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding”, Acta Mater., 56 (2008) 2223.
[20] Y.M. Wang, E. Ma, “Three strategies to achieve uniform tensile deformationin a nanostructured metal”, Acta Mater., 52 (2004) 1699
[21] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 290.
62
[22] Y.J. Li, X.H. Zeng, W Blum, “Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu”, Acta Mater., 52 (2004) 5009.
[23] Y.M. Wang, E. Ma, “Three strategies to achieve uniform tensile deformationin a nanostructured metal”, Acta Mater., 52 (2004) 1699.
[24] G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, “Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution”, Acta Mater., 54 (2006) 1759.
[25] H. W. Höppel, J. May, M Goken, “Enhanced strength and ductility in ultrafine-grained aluminum produced by accumulative roll bonding”, Adv. Eng. Mater., 9 (2004) 781.
[26] H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino, “Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets”, Acta Mater., 53, (2005), 1737.
[27] M.A. Meyers, K.K. Chawla, “Mechanical behavior of materials”, (1996),122-127.
[28] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 307-308.
[29]P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang, “Influence of boundary characters on the tensile behavior of sub-micron-grained aluminum”, Scripta Mater., 52, (2005), 265.
[30] Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, “Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density”, App. Phy. Let., 92, (2008), 081903
[31] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 203-205.
[32] Ø. Ryen, O. Nijs, E. Sjölander, B. Holmedal, H-E. Ekström, E. Nes, “Strengthening mechanisms in solid solution aluminum alloys”, Metal. Mater.Trans. A, 37A (2006) 1999.
[33] H.P. Stüwe, P. Les, “Strain rate sensitivity of flow stress, at large strain”, Acta Mater.,46,(1998),6375-6380.
[34] 庾忠義,「超細晶鋁之機械性質」,中山大學材料科學研究所博士論文,(2003)。[35] D. Hull, D.J. Bacon, “Introduction to dislocation”, 4th (2001) 59.
[36] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 197-201.
[37] 洪佩菁,「次微米晶粒鋁之拉伸變形行為」,中山大學碩士論文,(2004)。[38] Y. Birol, “Recrystallization of a supersaturated Al-Mn alloy”, Scripta Mater., 59, (2008), 611. [39] Y. Birol, “Impact of homogenization on recrystallization of a supersaturated Al-Mn alloy”, Scripta Mater., 60, (2009), 5.
[40] Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, “Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals”, Mater. Sci. Eng. A 381 (2004) 71–79 [41] Y.M. Wang, A.V. Hamza, E. Ma, “Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni”, Acta Mater., 54 (2006) 2715–2726
[42] M. Aghaie-Khafri, R. Mahmudi, “Flow Localization and Plastic Instability during the Tensile Deformation of Al Alloy Sheet”, Aluminum Res. Sum, (1998) 50-52.