(3.235.139.152) 您好!臺灣時間:2021/05/11 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李毓珊
研究生(外文):Yu-shan Li
論文名稱:超細晶AA3003鋁合金之拉伸變形行為研究
論文名稱(外文):A study of the tensile deformation of ultrafine grained AA3003 aluminum alloy
指導教授:高伯威
指導教授(外文):Po We Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:145
中文關鍵詞:機械性質等徑轉角擠型鋁合金
外文關鍵詞:AA3003ECAE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗利用不同的製程參數,改變超細晶AA3003鋁錳合金的微結構,以及合金元素的固溶/析出量,並討論其影響。實驗利用ECAE施以大量的應變量,使AA3003鋁合金的晶粒細化。
隨著ECAE的應變量增加,晶粒逐漸的被細化成更小的次晶粒,AA3003的拉伸強度以及加工硬化率也都有明顯的提升。在ECAE擠製前,降低均質化溫度,則使材料有較多的二次相顆粒殘留,並且提升擠製後的拉伸強度,以及加工硬化率。而擠製後的材料,隨著後續退火溫度及時間的提升,微結構逐漸改變,且次晶粒逐漸長大,使得材料的強度也隨之下降,並且產生四種不同的拉伸變形行為。此外,在超細晶AA3003的退火行為中,有退火硬化的現象發生,其硬化程度又以高溫均質化的材料較為明顯。 超細晶AA3003鋁合金的應變速率敏感值(m),受到ECAE的加工應變量不同,以及均質化溫度所影響。當ECAE加工應變量增加時,m也隨之提升,但m值仍小於低溫均質化處理後的材料。
表目錄 ....................................................................................................... iv
圖目錄 ......................................................................................................... v
一、前言 ..................................................................................................... 1
二、文獻回顧 ............................................................................................ 2
2-1 AA3003鋁合金............................................................................ 2
2-1-1 AA 3003鋁合金的析出物 ............................................... 3
2-2 等徑轉角擠型(equal channel angular extrusion, ECAE) ...... 5
2-2-1 等徑轉角擠型之原理 ...................................................... 5
2-2-2 ECAE的應變量............................................................... 6
2-3 超細晶金屬之機械性質 ............................................................. 7
2-3-1 超細晶金屬的強度 .......................................................... 8
2-3-2 超細晶的降伏下降(yield drop)現象 ............................. 9
2-3-3 超細晶金屬的延展性 .................................................... 10
2-3-4 超性晶材料的應變速率敏感度 ................................... 13
2-3-5 超細晶金屬的晶界特性 ................................................ 15
2-4 添加固溶合金元素的影響 ....................................................... 17
三、研究目的 .......................................................................................... 19
四、實驗方法 .......................................................................................... 20
4-1 實驗材料 ................................................................................... 21
4-2 均質化處理 (homogenization) ............................................... 21
4-3 等徑轉角擠型 (ECAE) ........................................................... 22
4-4 退火處理 (annealing) .............................................................. 22
4-5 微硬度測詴 (microhardness test) .......................................... 23
4-6 拉伸測詴 (tensile test) ............................................................ 24
4-7 微結構分析 (microstructure analysis) .................................. 25
五、實驗結果 .......................................................................................... 26
5-1 ECAE擠製後的微結構 ............................................................ 27
5-2 ECAE擠製AA3003 鋁合金的退火行為 ............................... 29
5-2-1 退火軟化曲線 ................................................................ 29
5-2-2 退火溫度造成的微結構變化 ....................................... 30
5-2-3 退火時間造成的微結構變化 ....................................... 31
5-3 超細晶AA3003鋁合金的拉伸變形行為 ............................... 32
5-3-1 ECAE擠製後的拉伸機械性質 .................................... 32
5-3-2 退火處理後的拉伸機械性質 ....................................... 34
5-3-3 低應變速率下的拉伸變形行為 ................................... 37
5-3-4 應變速率改變(strain rate jump)測詴 ......................... 38
5-3-5 拉伸後的表面變形與微結構 ....................................... 39
5-4 實驗結果總論 ........................................................................... 41
六、討論 ................................................................................................... 43
6-1 晶粒尺寸與降伏強度之關係 ................................................... 43
6-2 超細晶的降伏下降現象 ........................................................... 45
6-3 ECAE應變量對於超細晶AA3003的拉伸強度影響 ............ 47
6-4 均質化處理溫度對於超細晶AA3003的拉伸強度影響 ....... 48
6-5 超細晶AA3003的退火硬化現象 ........................................... 49
6-6 超細晶AA3003的應變速率敏感度 ....................................... 51
七、結論 ................................................................................................... 55
參考文獻 ................................................................................................... 57
[1] A.K. Vasudevan, R.D. Doherty, “Aluminum alloys – contemporary research and applications”, Academic press, (1989).
[2] 陳俊豪,「部分退火冷軋鋁合金之拉伸研究」,中山大學碩士論文,(2007)。
[3] Y.J. Li, L.Arnberg, “Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization”, Mater. Sci. Eng. A, 347, (2003), 130.
[4] S.P. Chen, N.C.W. Kuijpers, S.V.D. Zwaag, “Effect of micro- segregation and dislocations on the nucleation kinetics of precipitation in AA3003”, Mater. Sci. Eng. A, 341, (2003), 296.
[5] A.L. Dons, Trondheim, Yanjun Li, Sunndalsφra, S. Benum, Mosjφen, C. marioara, Trondheim, A. Johansen, A. Håkonsen, Ch.J. Simensen, Oslo, E.K. Jensen,Kristiansand, “Homogenisation of AA3103 and AA3003 Part II: Heating”, Alumium, 81, (2005), 1150.
[6] V.M. Segal, “Materials processing by simple shear”, Mater. Sci. Eng. A, 197, (1995), 157.
[7] K. Nakashima, Z. Horita, M. Nemoto, T. G. Langdon, “Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing”, Acta Mater., 46, (1998), 1589.
[8] V.M. Segal, K.T. Hartwig, R.E. Goforth, “In situ composites processed by simple shear”, Mat. Sci. Eng., A224, (1997), 107.
[9] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials”, Scripta Mater., 35, (1996), 143.
[10] M. Furukawa, Z. Horita, T.G. Langdon, “Factors influencing the shearing
61
patterns in equal-channel angular pressing”, Mater. Sci. Eng. A, 332, (2002), 97.
[11] S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, “Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion”, Metal. Trans. A, 28A (1997) 1047.
[12] N. Tsuji, Y, Ito, Y Saito, Y Minamino, “Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing”, Scripta Mater., 47 (2002) 893.
[13] C.Y. Yu, P.W. Kao, C.P. Chang, “Transition of tensile deformation behaviors in ultrafine-grained aluminum”, Actr Mater., 53 (2005) 4019. [14] M.A. Meyers, K.K. Chawla, “Mechanical behavior of materials”, (1996) 270.
[15] J.W. Wyrzykowski, M.W. Grabski, “Lueders deformation in ultrafine- grained pure aluminium”, Mater. Sci. Eng., 56 (1982) 197.
[16] N. Tsuji, Y, Ito, Y Saito, Y Minamino, “Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing”, Scripta Mater., 47 (2002) 893.
[17] R.E. Reed-Hill, “Physical metallurgy principles”, 3rd (1992) 286.
[18] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, “Enhanced tensile ductility of an ultra-fine-grained aluminum alloy”, Scripta Mater., 58 (2008) 163.
[19] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, “Tensile deformation of an ultrafine-grained aluminium alloy: Micro shear banding and grain boundary sliding”, Acta Mater., 56 (2008) 2223.
[20] Y.M. Wang, E. Ma, “Three strategies to achieve uniform tensile deformationin a nanostructured metal”, Acta Mater., 52 (2004) 1699
[21] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 290.
62
[22] Y.J. Li, X.H. Zeng, W Blum, “Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu”, Acta Mater., 52 (2004) 5009.
[23] Y.M. Wang, E. Ma, “Three strategies to achieve uniform tensile deformationin a nanostructured metal”, Acta Mater., 52 (2004) 1699.
[24] G.J. Fan, H. Choo, P.K. Liaw, E.J. Lavernia, “Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution”, Acta Mater., 54 (2006) 1759.
[25] H. W. Höppel, J. May, M Goken, “Enhanced strength and ductility in ultrafine-grained aluminum produced by accumulative roll bonding”, Adv. Eng. Mater., 9 (2004) 781.
[26] H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino, “Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets”, Acta Mater., 53, (2005), 1737.
[27] M.A. Meyers, K.K. Chawla, “Mechanical behavior of materials”, (1996),122-127.
[28] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 307-308.
[29]P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang, “Influence of boundary characters on the tensile behavior of sub-micron-grained aluminum”, Scripta Mater., 52, (2005), 265.
[30] Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, “Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density”, App. Phy. Let., 92, (2008), 081903
[31] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 203-205.
[32] Ø. Ryen, O. Nijs, E. Sjölander, B. Holmedal, H-E. Ekström, E. Nes, “Strengthening mechanisms in solid solution aluminum alloys”, Metal. Mater.Trans. A, 37A (2006) 1999.
[33] H.P. Stüwe, P. Les, “Strain rate sensitivity of flow stress, at large strain”, Acta Mater.,46,(1998),6375-6380.
[34] 庾忠義,「超細晶鋁之機械性質」,中山大學材料科學研究所博士論文,(2003)。
[35] D. Hull, D.J. Bacon, “Introduction to dislocation”, 4th (2001) 59.
[36] G.E. Dieter, “Mechanical metallurgy”, SI Metric edition, (1988), 197-201.
[37] 洪佩菁,「次微米晶粒鋁之拉伸變形行為」,中山大學碩士論文,(2004)。
[38] Y. Birol, “Recrystallization of a supersaturated Al-Mn alloy”, Scripta Mater., 59, (2008), 611. [39] Y. Birol, “Impact of homogenization on recrystallization of a supersaturated Al-Mn alloy”, Scripta Mater., 60, (2009), 5.
[40] Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, “Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals”, Mater. Sci. Eng. A 381 (2004) 71–79 [41] Y.M. Wang, A.V. Hamza, E. Ma, “Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni”, Acta Mater., 54 (2006) 2715–2726
[42] M. Aghaie-Khafri, R. Mahmudi, “Flow Localization and Plastic Instability during the Tensile Deformation of Al Alloy Sheet”, Aluminum Res. Sum, (1998) 50-52.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔