(3.80.6.131) 您好!臺灣時間:2021/05/14 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭祐松
研究生(外文):Yu-sung Cheng
論文名稱:1,3,5-Tri(1-pyrenyl)benzene(TPB3)之材料發光特性探討及其應用於有機電激發光元件之研究
論文名稱(外文):The characteristic of 1,3,5-Tri(1-pyrenyl)benzene(TPB3) and the performance of organic light-emitting device
指導教授:張美濙
指導教授(外文):Mei-Ying Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:145
中文關鍵詞:綠光紅光有機電激發光白光
外文關鍵詞:white OLEDred OLEDTPB3green OLED
相關次數:
  • 被引用被引用:8
  • 點閱點閱:288
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究發現1,3,5-Tri(1-pyrenyl)benzeneTPB3其成膜條件會影響分子薄膜型態進而影響其光電特性,當TPB3在低鍍率時,材料成膜堆疊緻密性良好,薄膜的粗糙度較為平整,因而在較長波長約508nm左右有較大之放光強度;在高鍍率時,在排列結構上則是較無規則性,相對在短波長約476nm左右有較大之放光強度,因此可藉由蒸鍍條件的不同,去調變出所需要之光色而應用於元件製作上。
在元件部份,可依據光色分為三個重點,分別是第一部份紅光元件,第二部份為綠光元件,最後第三部份為白光元件。
另外因TPB3其具有良好的穩定性及高效率、高亮度的特性,為ㄧ個極具潛力的紅光及綠光主發光體材料,分別為:
在低鍍率下之TPB3與紅光客發光體材料4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljuloli dyl-9-enyl)
-4H-pyran (DCJTB)
在高鍍率下之TPB3與綠光客發光體材料2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10(2-benzothiazolyl)quinolizine-[9,9a,1gh]coumarin (C545T)
有著良好的光譜重疊面積與極佳的能量轉移效果,因此選擇DCJTB及C545T作為紅光和綠光的客發光體材料,元件結構如下:
ITO(130nm)/NPB(65nm)/TPB3:(DCJTB or C545T)(40nm)/Alq3(30nm)/
LiF(0.8nm)/Al(200nm)
並探討其元件特性,包括亮度、效率及CIE座標等等。
首先,在第一部分的紅光元件中,我們使用1,3,5-Tri(1-pyrenyl)benzene(TPB3)作為主發光體材料,並以4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)作為客發光體材料,利用TPB3可調變光譜的特性,控制TPB3的蒸鍍條件,使其在低鍍率0.1 Å/sec的情況下,並搭配DCJTB而製作出良好發光特性的紅光元件。
經過實驗之後得知,TPB3膜厚為40nm為最佳膜厚及DCJTB摻雜濃度為2%是最佳紅光元件的條件,我們使用的元件結構為
ITO(130nm) /NPB(65nm) /TPB3: 2% DCJTB(40nm) /Alq3(30nm) /LiF
(0.8nm) /Al(200nm)。
我們得到最大亮度可達到70600 cd/m2(at 13.5V),效率穩定性佳,最大發光效率為4.83 cd/A,最大功率效率為3.7 lm/W;在3.5 V~13.5 V的操作電壓範圍內(對應電流密度為0~1600 mA/cm2),發光效率均可維持在4.12~4.83 cd/A之間,功率效率也均可維持在1 lm/W以上,色純度亦佳,其CIE座標為(0.63,0.37),其亮度與效率方面皆將近為Alq3標準元件之兩倍。
在第二部分的綠光元件中,我們使用1,3,5-Tri(1-pyrenyl)benzene(TPB3)作為主發光體材料,並以2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10(2-benzothiazolyl)quinolizine-[9,9a,1gh]coumarin (C545T)作為客發光體材料,我們利用TPB3可調變光譜的特性,控制TPB3的蒸鍍條件,使其在高鍍率3 Å/sec的情況下,產生藍光光譜,期許與C545T的吸收光譜重疊的面積達到最大並能有最佳的能量轉移效果,而製作出良好的綠光元件。經由實驗之後得知,當摻雜濃度為1%時為綠光元件的最佳條件,我們使用的元件結構為
ITO(130nm) /NPB(65nm) /TPB3: 1% C545T(40nm) /Alq3(30nm) /LiF
(0.8nm) /Al(200nm)。
我們得到最大亮度可達到166000 cd/m2(at 11.5V),效率穩定性佳,最大發光效率為10.0 cd/A,最大功率效率為6.67 lm/W;在電流密度為20 mA/cm2時,發光效率為8.85 cd/A,功率效率為5.56 lm/W。且在4.0 V~11.0 V的操作電壓範圍內(對應電流密度為6.11~1790 mA/cm2),發光效率均可維持在7.98~10.0 cd/A之間,功率效率也均可維持在2.28 lm/W以上,色純度亦佳,其CIE座標為(0.31,0.61),其亮度與效率方面,不但可達到Alq3元件之標準且更為優異之。
在第三部分的白光元件中,我們使用1,3,5-Tri(1-pyrenyl)benzene(TPB3)作為主發光體材料,並以4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)作為客發光體材料,依然利用TPB3光譜的可調變性,在高鍍率的蒸鍍條件下為藍光光譜並摻雜極少量的DCJTB以混成白光,期以製作出色純度佳的白光元件。經由實驗之後得知,當摻雜濃度為0.05%時為白光元件的最佳條件,我們使用的元件結構為
ITO(130nm) /NPB(65nm) /TPB3: 0.05%DCJTB(40nm) /Alq3(30nm) /LiF(0.8nm) /Al(200nm)。
我們得到最大亮度可達到55690 cd/m2(at 11.5V),最大發光效率為4.57 cd/A,最大功率效率為3.01 lm/W;在3.5 V~11.5 V的操作電壓範圍內(對應電流密度為0~1660 mA/cm2),發光效率均可維持在3.34~4.57 cd/A之間,功率效率也均可維持在0.91 lm/W以上,在9.5V~12.5V的操作電壓範圍內,其有穩定性佳、色純度極好的白光CIE座標在(0.34,0.34)~(0.33,0.33)之間。
It has been found that the results of 1,3,5-Tri(1-pyrenyl)benzene
(TPB3) on the processing conditions of different depositon rates affect
the morphology of thin films and the electroluminescent performance of
the devices. At TPB3 deposition low rate, the average roughness of
TPB3 thin film was much smoother comparing to high rate, the surface
approached morphology and the wavelength peak was around 508nm. At
TPB3 deposition high rate, the surface approached amorphous and the
wavelength peak was around 476nm. Take advantage of varing deposition
rates with different spectra to apply for colorful OLEDs.
This research includes three parts as mentioned: (1) red organic light-emitting devices and (2) green organic light-emitting devices and (3) white organic light-emitting devices.
In order to overlap perfectly between the host and dopant materials, we fabricated the red organic electroluminescent devices incorporating TPB3 at deposition low rate as the host material and 4-(dicyanomethylene
)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as red light-emitting dye and the green organic electroluminescent devices incorporating TPB3 at deposition high rate as the host material and 2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10(2-
benzothiazolyl)quinolizine-[9,9a,1gh]coumarin (C545T) as green light-emitting dye, respectively.
First, we deposited TPB3 at the lower rate of 0.1 Å/sec as the host material doped the red dopant, DCJTB, for making red OLEDs. The device: ITO(130nm)/NPB(65nm)/TPB3: 2% DCJTB(40nm)/Alq3(30nm) /LiF(0.8nm)/Al(200nm) exhibited a maximum luminance at 13.5V of 70600 cd/m2, ca. four times higher than that of the device using Alq3 as the host material at the same potential. The maximum current and power efficiencies were 4.83 cd/A and 3.7 lm/W, respectively. The current and power efficiencies were greater than 4 cd/A and 1 lm/W, respectively, over the large range of potentials (3.5~13.5V) with good Commission Internationale de l’Eclairage (CIE) coordinates of (0.63,0.37). These results indicate that searching for a suitable host material is a promising approach toward achieving high-efficiency red OLEDs.
The second, we deposited TPB3 at the higher rate of 3.0 Å/sec as the host material doped the green dopant C545T in order to overlap perfectly between them for spectra in green OLEDs. The device: ITO(130nm) /NPB(65nm) /TPB3: 1%C545T(40nm) /Alq3(30nm) /LiF(0.8nm)
/Al(200nm) exhibited a maximum luminance at 11.5V of 166000 cd/m2, it’s higher than that of the device using Alq3 as the host material at the same potential. The maximum current and power efficiencies were 10.0 cd/A and 6.67 lm/W, respectively. The current and power efficiencies were greater than 7.98 cd/A and 2.28 lm/W, respectively, over the large range of potentials (4.0~11.0V) with good Commission Internationale de l’Eclairage (CIE) coordinates of (0.31, 0.61). These results indicate that TPB3 OLEDs are good than Alq3 OLEDs..
For TPB3 white OLEDs, we deposited TPB3 at the higher rate of 3.0 Å/sec as the host material doped the red dopant DCJTB in order to make high color purity white OLEDs. The device: ITO(130nm) /NPB(65nm)
/TPB3: 0.05%DCJTB(40nm) /Alq3(30nm) /LiF(0.8nm) /Al(200nm) exhibited a maximum luminance at 11.5V of 55690 cd/m2, the maximum current and power efficiencies were 4.57 cd/A and 3.01 lm/W, respectively. The current and power efficiencies were greater than 3 cd/A and 0.91 lm/W, respectively, over the large range of potentials (3.5~11.5V) with good Commission Internationale de l’Eclairage (CIE) coordinates of (0.34 , 0.34)~(0.33 , 0.33). These results indicate that TPB3 white OLEDs have good luminance and color purity.
誌謝 I
中文摘要 II
英文摘要 VI
目錄 .. IX
圖目錄 XII
表目錄 XVIII
第一章 緒論 .1
1-1有機發光二極體的發展與歷史沿革…………………………..1
1-2 OLED元件的基本結構………………………………………...2
1-3 OLED元件基本發光原理……………………………………...5
1-4 OLED元件材料之介紹………………………………………...7
1-4-1高分子發光材料………………………………………….8
1-4-2小分子發光材料介紹…………………………………….9
1-5 OLED發光效率之定義和測量方法……………………….....19
1-6 OLED的色彩鑑定…………………………………………….22
第二章 理論基礎與實驗動機 25
2-1 OLED能量轉移機制………………………………………….25
2-1-1 Förster 能量轉移機制………………………………….27
2-1-2 Dexter能量轉移機制…………………………………...31
2-2 OLED掺雜技術……………………………..………………….32
2-3 摻雜染料濃度淬熄效應…………………………….…………34
2-4 實驗動機……………………………………………….………35
第三章 實驗步驟 36
3-1 實驗流程及儀器簡介………………………………………….36
3-1-1實驗架構……..………………………………………….36
3-1-2 實驗藥品……………………………………………….37
3-1-3 實驗分析儀器…………………………………………37
3-2有機電激發光元件製程之分類 46
3-3小分子OLED之製作流程介紹 47
3-3-1基板ITO玻璃前處理 49
3-3-2有機材料蒸鍍 54
3-3-3陰極蒸鍍 63
3-3-4封裝製程………………………………………...………64
3-4元件製作與量測………………………………………………..65
第四章 結果與討論 68
4-1光譜位移現象探討………..............................................……..68
4-1-1裂解溫度測試 68
4-1-2薄膜型態(morphology) 70
4-2發光層主發光體材料膜厚最佳化 77
4-3紅光元件 83
4-4綠光元件 97
4-5白光元件 110
第五章 總結 120
參考文獻 122
























圖目錄
圖1-1蒽(Anthracence) 2
圖1-2雙層式OLED結構 2
圖1-3共軛高分子PPV 2
圖1-4 OLED元件基本結構 4
圖1-5 OLED基本結構示意圖 7
圖1-6高分子PVK 8
圖1-7 高分子電洞注入材料PEDOT:PSS……………….........9
圖1-8電洞注入材料CuPc 9
圖1-9電洞傳輸材料TPD 10
圖1-10電洞傳輸材料NPB 10
圖1-11電子傳輸材料Alq3………………..…………….……11
圖1-12客分子藍光材料Perylene 14
圖1-13口奎口丫啶酮(Quinacridone) 15
圖1-14綠光客體Coumarin 6 15
圖1-15 綠光客體 C545T…………………………………….15
圖1-16紅光客體 DCM 18
圖1-17紅光客體 DCJ 18
圖1-18紅光客體DCJT 18
圖1-19紅光客體 DCJTB 18
圖1-20 CIE色座標....................................................................24
圖2-1能量轉移方式 26
圖2-2主、客發光體之間的能量移轉機制 26
圖2-3施體螢光光譜和受體吸收光譜重疊示意圖 27
圖2-4 Förster 能量轉移機制 28
圖2-5 Dexter能量轉移機制.....................................................31
圖2-6典型異質接面元件能接分佈圖(中):兩個載子傳輸層間放入一層發光層(右)在異質接面元件摻雜染料(左) 33
圖2-7 電子、電洞在結合後之能量分佈圖.............................34
圖3-1實驗架構流程圖……………………………………….36
圖3-2紫外光/可見光光譜儀光學系統模擬 38
圖3-3 α-step圖.......................................................................39
圖3-4 α-step系統示意圖 39
圖3-5 AC-2圖........................................................................40
圖3-6 AC-2量測圖................................................................40
圖3-7 C9920-02系統示意圖....................................................41
圖3-8 AFM主要結構.............................................................43
圖3-9 AFM原理.....................................................................44
圖3-10 AFM表面粗糙度計算示意圖......................................45
圖3-11小分子與高分子元件製作流程圖................................47
圖3-12 OLED之製作流程 48
圖3-13蝕刻完成後之ITO基板,陽極與陰極交接處,面積0.03cm2 51

圖3-14 電漿生成示意圖 53
圖3-15蒸鍍有機材料示意圖...................................................54
圖3-16冷凍幫浦低溫抽氣主體構造 57
圖3-17常用的加熱器,(a)絲型 (b)舟型(c)籃型(d)坩鍋……..58
圖3-18蒸鍍速率監控模組示意圖……………………...…….61
圖3-19元件結構圖...................................................................63
圖3-20 蒸鍍陰極示意圖..........................................................64
圖3-21 本實驗蒸鍍機腔體內部示意圖..................................66
圖4-1 TPB3裂解溫度量測圖...................................................69
圖4-2 TPB3不同蒸鍍速率下之PL光譜圖.............................70
圖4-3 TPB3稀薄溶液及蒸鍍薄膜之PL光譜圖.....................71
圖4-4 TPB3直接滴定烤乾薄膜和蒸鍍薄膜之PL光譜圖......72
圖4-5直接滴定烤乾薄膜和不同鍍率的蒸鍍薄膜之PL光譜……………………………………………………....74
圖4-6 TPB3之AFM圖,(a)藍光 (b)藍光&綠光 (c)綠光........75
圖4-7不同鍍率下之模擬示意圖,(a)高鍍率 (b)低鍍率….....76
圖4-8 本實驗所用的有機材料..................................................77
圖4-9 元件結構..........................................................................78
圖4-10 TPB3層不同膜厚的電流密度對電壓關係曲線……...79
圖4-11 TPB3層不同膜厚的發光亮度對電流密度關係曲線…80
圖4-12 TPB3層不同膜厚的發光效率對電流密度關係曲線...81
圖4-13 TPB3層不同膜厚的功率效率對電流密度關係曲線...81
圖4-14 TPB3層膜厚為40 nm的元件光譜圖……………….82
圖4-15 TPB3(G)、Alq3的放光光譜和DCJTB的吸光光譜之重疊關係............................................................................83
圖4-16本實驗所用的有機材料..................................................87
圖4-17紅光元件結構.................................................................88
圖4-18能階關係圖.....................................................................89
圖4-19 TPB3(G)和Alq3相對於DCJTB之電流密度對電壓曲線
圖…...……..….……………………………………....90
圖4-20 TPB3(G)和Alq3相對於DCJTB之發光亮度對電流密度曲線圖………………………………………………..91
圖4-21 TPB3(G)和Alq3相對於DCJTB之發光效率對電流密度曲線…………………………….…………………….91
圖4-22 TPB3(G)和Alq3相對於DCJTB之功率效率對電流密度曲線圖……………………………………………..92
圖4-23 TPB3(G)摻雜不同DCJTB濃度對應的EL光譜圖.......93
圖4-24 TPB3(G)摻雜不同DCJTB濃度對應之CIE座標圖…..94
圖4-25不同主發光體材料之EL光譜圖....................................95
圖4-26 TPB3(B)、Alq3的放光光譜和C545T的吸光光譜之重疊關係…………………………………… ………….97
圖4-27本實驗所用的有機材料………………………...……100
圖4-28綠光元件結構…………………………………………101
圖4-29能階關係圖....................................................................101
圖4-30 TPB3(B)和Alq3相對於C545T之電流密度對電壓曲線圖…………………………………………………....103
圖4-31 TPB3(B)和Alq3相對於C545T之發光亮度對電流密度曲線圖………………………………………………104
圖4-32 TPB3(B)和Alq3相對於C545T之發光效率對電流密度曲線圖…………………………………………..…..104
圖4-33 TPB3(B)和Alq3相對於C545T之功率效率對電流密度曲線圖……………………………………………....105
圖4-34 TPB3(B)摻雜不同C545T濃度對應的EL光譜圖…...106
圖4-35 TPB3(B)和Alq3相對於C545T之CIE座標圖……….107
圖4-36 TPB3(B)的放光光譜和DCJTB的吸光光譜之重疊關
係…… ………………………………….……………110
圖4-37本實驗所用的有機材料……………………………....111
圖4-38白光元件結構………………………………………....112
圖4-39摻雜0.03% DCJTB的光譜圖.......................................113
圖4-40摻雜0.03% DCJTB的CIE座標變化圖………………113
圖4-41摻雜0.05% DCJTB的光譜圖………………………..114
圖4-42摻雜0.05% DCJTB的CIE座標變化圖……………...115
圖4-43摻雜0.07% DCJTB的光譜圖.......................................116
圖4-44摻雜0.07% DCJTB的CIE座標變化圖……………....116
圖4-45不同DCJTB濃度之電流密度對電壓曲線圖...............117
圖4-46不同DCJTB濃度之發光亮度對電流密度曲線圖.......118
圖4-47不同DCJTB濃度之發光效率對電流密度曲線圖.......118
圖4-48不同DCJTB濃度之功率效率對電流密度曲線圖…...119






表目錄

表3-1 AFM表面粗糙度定義…………………………………44
表3-2多次Tooling factor 修正後利用α-step 所量測結果. .61
表3-3為本實驗膜厚修正係數 62
表4-1 TPB3(G)和Alq3相對於DCJTB的特性比較.................86
表4-2 TPB3(G)摻雜不同DCJTB濃度對應之CIE座標值…94
表4-3 不同主發光體材料之元件特性比較............................95
表4-4 TPB3(B)和Alq3相對於C545T的特性比較................99
表4-5 TPB3(B)和Alq3相對於C545T所對應之CIE座標值.107表4-6不同主發光體材料之元件特性比較............................108
[1] M. Pope, H. P. Kallmann , Magnante, Journal of Chemical Physics ,3 8,2042(1963).
[2] C. W. Tang and S. A. VanSlyke, Applied Physics Letters ,51,913,
(1987).
[3] J.H. Burrououghes,D.D.C Bradley,A.R. Brown, R.N. Marks,
K. MacKet, R.H. Friend, P.L. Burn, A.B. Holmes,Nature,34 7,539(1990).
[4] C.W. Tang, Applied Physics Letters , 48,183(1985)
[5] C. Adachi, S. Tokito, T. Tsutsui, S. Saito,Jpn. Journal of Applied Physics ,27,L713(1988).
[6] M. Era, C. Adachi, T. Tsutsui, S. Ssito, Chemical Physics Letters ,178, 488(1991).
[7] J. Kido, M. Kohda, K. Okuyama, K. Nagai, Applied Physics Letters , 61,761(1992).
[8] J. Kido, M. Kimura, K. Nagai, Science 267,1332(1995).
[9] J. Kido, H. Shionoya, K. Nagai, Applied Physics Letters , 67,
2281, (1995).
[10] S. Miyata, H. S. Nalwa, Organic Electroluminescent Mater ials and Devices, Gordon and Breach Science Publishers, Chap 1(1997).
[11] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii,
Y. Ouchi, K. Seki, Journal of Applied Physics ,83,4928 (1998).
[12] S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials
and Devices, Gordon and Breach Science Publishers,Chap 8(1997).
[13] S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials
and Devices, Gordon and Breach Science Publishers, Chap 9(1997).
[14] S.A. VanSlyke, C.H. Chen, C.X. Tang, Applied Physics Letters ,
69, 2160, (1996).
[15] K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chemistry of Materials ,10,1017(1998).
[16] G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt
,H. Murata, Z. H. Kafafi, Applied Physics Letters ,75, 766, (1999).
[17] C. Giebeler, H. Antoniadis, D. D. C. Bradley, Y. Shirota, Journal of Applied Physics ,85,608(1999).
[18] J.D. Anderson, E.M McDonald, P.A. Lee, M.L. Anderson,
E.L. Ritchie, H.K. Hall, T. Hopkins, E.A. Mash, J.Wang,A.
B. Kippelen, N. Peyghambarian, R.M. Wightman, N.R.
Armstrong, J.Am.Soc.,120,9646(1998).
[19] C.H. Chen and C.W.Tang, Chemical of Functional Dyes, Vol.
2,Z. Yoshida and Y. Shirota(ed.),Mita Press, Tokyo, Japan,p.
536(1993).
[20] R. Murayama, US5,227,252(1993).
[21] C. W. Tang, S. A. Van Slyke, and C. H. Chen, Applied Physics Letters , 85, 3610(1989).
[22] C. H. Chen and C. W. Tang, Chemical of Functional Dyes, Vol.2
[23] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Thin Solid Films, 363,327,(2000).
[24] B. Chen, X. Lin, L. Chen, C.-S. Lee, W. A. Gambling, S.-T. Lee, Journal of Physics D:Applied Physics ,34, 30 (2001).
[25] X. H. Zhang, B. J. Chen, X. Q. Lin, O. Y. Wong, C. S. Lee, H. L. Kwong, S.T. Lee, S. K. Wu, Chemistry of Materials ,13, 1565(2001).
[26] X. Q. Lin, B. J. Chen, X. H. Zhang, C. S. Lee, H. L. Kwong, S. T. Lee, Chemistry of Materials ,13, 456 (2001).
[27] X. T. Tao, S. Miyata, H. Sasabe, G. J. Zhang, T. Wada, M. H. Jiang, Applied Physics Letters ,77, 3272 (2000).
[28] 顧鴻壽 著,光電有機電激發光顯示器,新文京開發出版社,台北,民國90年。
[29] A. A. Shoustikov, Y. You, and M. E. Thompson, IEEE Journal on SelectedTopics in Quantum Electronics. 4, 3, (1998).
[30] 蔡宜展,” OLED新穎紅光摻雜材料特性之研究國立中山
大學 光電工程研究所碩士論文,高雄(2005)
[31] 薛常浩,”Alq3-C545T放光系統中,能量轉移與聚集現象的影響之研究”,私立輔仁大學化學系碩士論文,台北(2000)
[32] Koichi Suzuki, Akihiro Seno, Hiroshi Tanabe, Kazunori Ueno, Synthetic Metals , 143, 89–96,(2004).
[33] Jie Liu, Tzung-Fang Guo, and Yang Yang, Journal of Applied Physics ,91, 3, (2002).
[34] Jinook Kim, Jaeyoon Lee, C. W. Han, N. Y. Lee, and In-Jae Chung, Applied Physics Letters ,82, 24, (2003).
[35] Yu-Hua Niu, Qiong Hou, and Yong Cao, Applied Physics Letters ,81, 4, (2002).
[36] Byung Doo Chin, Lian Duan, Moo-Hyun Kim, Seong Taek Lee,and Ho Kyoon Chung, Journal of Applied Physics ,85, 19, (2004).
[37] Ming-Lung TU, Yan-Kuin SU, Shoou-Jinn CHANG, Te-Hua FANG1, Wen-Hua CHEN and Henglong YANG2, Japanese Journal of Applied Physics, 44, 2787–2789, (2005).
[38] S.-D. Jung, D.-H. Hwang, T. Zyung, W.H. Kim, K.G. Chittibabu, S.K. Tripathy, Synthetic Metals, 98, 107–111, (1998).
[39] Y. Shi, J. Liu, and Y. Yang, Journal of Applied Physics , 87, 9, (2000).
[40] Thuc-Quyen Nguyen, Ignacio B. Martini, Jei Liu, and Benjamin J. Schwartz, Journal of Physical Chemistry B , 104, 237-255, (2000).
[41] 陳一帆,碩士論文,國立中山大學光電工程研究所,高雄 (2006).
[42] 伍秀菁,汪若文,林美吟著,真空技術與應用,國科會精儀
中心出版
[43] L.F. Cheng, L.S. Liao, W.Y. Lai , X.H. Sun, N.B. Wong, C.S.
Lee,S.T. Lee, Chemical Physics Letters , 319, 418–422, (2000)
[44] Haichuan Mu, Hui Shen, David Klotzkin, Solid-State Electronics ,48, 2085–2088, (2004).
[45] Shun-Wei Liu, Chih-Chien Lee, Chih-Han Wang, Jiun-Haw Lee, Chin-Ti Chen, Juen-Kai Wang, Chemical Physics Letters ,474, 207–211, (2009).
[46] C.B. Lee, A. Uddin, X. Hu, T.G. Andersson, Materials Science & Engineering B , 112, 14–18, (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔