(3.238.173.209) 您好!臺灣時間:2021/05/08 15:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳平夷
研究生(外文):Peng-Yi Chen
論文名稱:釔鋁石榴石晶體光纖之LHPG生長系統模擬與實驗
論文名稱(外文):Simulation and experiment on laser-heated pedestal growth of yttrium-aluminum-garnet single-crystal fibers
指導教授:黃升龍藍崇文藍崇文引用關係鄭木海
指導教授(外文):Sheng-Lung HuangChung-Wen LanWood-Hi Cheng
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:119
中文關鍵詞:質傳對流微浮動熔區熱毛細對流有限體積差分方法雷射基座加熱生長計算流體力學
外文關鍵詞:molten-zone lengthLHPGcontrol-volume finite difference methodCFDtwo-dimensional simulationmass-transfer convectionfluid flowthermocapillary convectioncrystal fiberheat transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於計算機的運算速度以及數值方法的功能日益增強,利用計算流體力學(Computational fluid dynamics; CFD)來完成系統之模擬分析以輔助實驗之不足與降低風險,並提昇產品品質與節省研發所耗之成本,已成為未來之趨勢。
本論文以二維模擬於雷射基座加熱生長(Laser-heated pedestal growth; LHPG) 系統之微浮動熔區氣液與固液介面形狀的研究,數值方法係使用有限體積差分方法(control-volume finite difference method )之非正交體適網格系統(non-orthogonal body-fitting grid system),使得介面形狀能夠被有效率與精準測定。在穩定長晶情況下,各種長晶速度的熔區在CO2雷射加熱下,其所允許最高與最低加熱功\\\率的熔區長度和形狀能夠被詳細檢測出來,並且重力對微浮動熔區的效應也被模擬分析,它顯示水平生長方向LHPG 的可能性,此水平系統將有利於長晶纖的生長操作。
以上熔區形狀的實驗與模擬分析比對後,對於LHPG的熔區之熱傳(heat transfer)與流體流動(fluid flow)作了分析,在長度尺度約為一公分的系統中,完整的描述了包含原棒與熔區以及晶纖所組成的全域溫度與軸向溫度梯度。當比較原棒直徑尺度約為幾公分大之塊材的長晶系統時,較小的尺度熔區內,自然對流(natural convection)強度將下降約六個數量級。因而是熱傳導決定了熔區內的溫度分布而不是熱對流效應。對流呈現由熱毛細對流(thermocapillary convection)與質傳對流(mass-transfer convection)主控,而且熱毛細對流強度最後演化也變得比質傳對流大,主控了熔區內流場分布。當熱毛細對流係數大到約為10-4~10-3時,熔區的形狀呈現對稱與雙渦流分佈,因縮徑對熔區內流場所造成的影響是非常小的。經由以上的分析,其結果將可更進一步提供爾後濃度分析與水平生長製程之基礎。
Recently the computational speed and the functions of the numerical methods are advancing rapidly. It is the future trend that using the computational fluid dynamics (CFD) to perform simulation for making up the experimental deficiency, reducing the risk, improving the quality of the product, and saving the cost of research and development.
A two-dimensional simulation was employed to study the melt/air and melt/solid interface shapes of the miniature molten zone formed in the laser-heated pedestal growth (LHPG) system. Using non-orthogonal body-fitting grid system with control-volume finite difference method, the interface shape can be determined both efficiently and accurately. During stable growth, the dependence of the molten-zone length and shape on the heating CO2 laser is examined in detail under both the maximum and the minimum allowed powers with various growth speeds. The effect of gravity for the miniature molten zone is also simulated, which reveals the possibility for a horizontally oriented LHPG system. Such a horizontal system is good for the growth of long crystal fibers.
After comparing with the shape of the molten zone in terms of the experiment and the analysis of the simulation shown as above. Heat transfer and fluid flow in the LHPG system are analyzed near the deformed interfaces. The global thermal distributions of the crystal fiber, the melt, and the source rod are described by temperature and its axial gradient within length of ~10 mm. As compared with the growth of bulk crystal of several centimeters in dimension, natural convection drops six orders in magnitude due to smaller melt volume; therefore, conduction rather than convection determines the temperature distribution in the molten zone. Moreover, thermocapillary convection rather than mass-transfer convection becomes dominant. The symmetry and mass flow rate of double eddy pattern are significantly influenced by the molten-zone shape due to the diameter reduction and the large surface-tension-temperature coefficient in the order of 10-4~10-3. According to the analysis shown as above, the results could be further extended for the analysis of the concentration profile and study of horizontal growth.
中文摘要……………………………………………………………………….. i
Abstract ……………………………………………………………………….. ii
Table of Content. ……………………………………………………………... iv
List of Tables…………………………………….…………………………….. vi
List of Figures…………………………………………………………….…… vii

Chapter 1 Introduction……………………………………………………….. 1
1.1 History of crystal growth…………………………………………………. 1
1.2 Micro-floating zone by the LHPG method………………………….……. 4
1.3 Numerical simulation of the floating zone method…………….………… 4
1.4 Thesis structure……………………………………………………….…... 5
Chapter 2 Crystal growth theory and experiment…………………….……. 7
2.1 Crystal growth theory……………………………..………………….…... 7
2.1.1 Fundamentals……………………………………………….……. 7
2.1.2 Nucleation……………………………………………….……….. 8
2.1.3 Growth…………………………………………………………… 13
2.1.4 Solute distribution during freezing……………………….……… 14
2.2 LHPG micro-floating zone system……………………………………….. 18
2.3 Physical properties of yttrium aluminum garnet melt…………………... 23
2.3.1 Density…………………………………………………………… 24
2.3.2 Surface tension…………………………………………………... 25
2.3.3 Contact angle…………………………………………………….. 26
2.3.4 Viscosity…………………………………………………………. 27
Chapter 3 Conservation laws of fluid dynamics……………………………. 28
3.1 Governing equation of the low-doped incompressible fluid under three-dimensional space……………………………………………….….
28
3.1.1 Continuity equation…………………………….…………..…….. 28
3.1.2 Equation of motion…...……………………………….................. 31
3.1.3 Equation of energy…………………………………………….…. 38
3.1.4 Equation of mass-transfer………………………………………... 42
3.2 Governing equation of the stream function under two-dimensional coordinates………………………………………………………….……..
48
3.2.1 Stream function..………………………………............................ 48
3.2.2 Two-dimensional stream function in cylindrical coordinates……. 50
Chapter 4 Boundary conditions and two-dimensional numerical model of the LHPG system……………………………………………….….
52
4.1 Physical model of the LHPG system………………................................... 53
4.2 Boundary conditions………….………………………………….…..…… 54
4.3 Coordinate transformation and numerical model…..................................... 57
4.4 Shape of the free surface…….…………..................................................... 59
4.5 Numerical method..……………………...................................................... 60
Chapter 5 Comparison between experiments and simulations…………….. 62
5.1 Laser intensity profile..…………………………………..…………..…... 62
5.2 Shape of molten zone……………………………………………..……… 64
5.3 Slope of the melt-zone length divided by input power……………….….. 67
Chapter 6 Discussions on the free surface, temperature distribution, and flow field……………………………………………………………
69
6.1 Free surface shape………………………………………….……………... 69
6.1.1 Curvature of the free surface……………………………………... 70
6.1.2 Gravity effect on micro-floating zone…………….……………… 72
6.2 Temperature distribution and flow field..…................................................. 73
6.2.1 Global isotherms and streamlines………………………………... 73
6.2.2 Diameter reduction effect on isotherms and streamlines…….…... 77
6.3 Convection effects on isotherms and streamlines……………..….………. 78
Chapter 7 Conclusions and future work.......................................................... 83
7.1 Conclusions….…………….…..…………………..……………………… 83
7.2 Future work……..…………..…………………………………………….. 84

References ……..………………………………………..……………………. 89
Biography ………..……………………………………..…………………….. 100
Publication List……………………………………………..……………..….. 101
[1.1]H. J. Scheel, “Historical aspects of crystal growth technology,” J. Cryst. Growth 211, 1 (2000).
[1.2]J. Czochralski, “Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle,” Z. Phys. Chemie 92, 219 (1918).
[1.3]G. K. Teal and J. B. Little, “Growth of germanium single crystals,” Phys. Rev. 78, 647 (1950).
[1.4]G. Müller, “Review: The Czochralski method - where we are 90 years after Jan Czochralski′s invention,” Cryst. Res. Technol. 42, 1150 (2007).
[1.5]J. C. Legros, “Development of numerical code for the study of marangoni convection,” MRC, Bruxelles ( 2004).
[1.6]R. S. Feigelson, “Opportunities for Research on Single-crystal Fibers,” Mater. Sci. Eng. B 1, 67 (1988).
[1.7]J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, & F. Gonthier, “Tapered single-mode fibres and devices Part 1 : Adiabaticity criteria,” IEE Proc. J. Optoelecton. 138, 343 (1991).
[1.8]C. N. Tsai, Y. S. Lin, K. Y. Huang, Y. S. Lin, C. C. Lai, and S. L. Huang, “Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber with pre-growth perimeter deposition,” Jpn. J. Appl. Phys. 47, 6369 (2008).
[1.9]M. J. F. Digonnet, C. J. Gaeta & H. J. Shaw, “1.064- and 1.32-mm Nd:YAG Single Crystal Fiber Lasers,” IEEE J. Lightwave Technol. LT-4, 454 (1986).
[1.10]C. Y. Lo, P. L. Huang, T. S. Chou, L. M. Lee, T. Y. Chang, S. L. Huang, L. Lin, H. Y. Lin & F. C. Ho, “Efficient Nd:Y3Al5O12 crystal fiber laser,” Jpn. J. Appl. Phys. 41, L1228 (2002)..
[1.11]G. M. Davis, I. Yokohama, S. Sudo, K. Kubodera, “1.3-microns Nd:YAG crystal fiber amplifiers,” IEEE Photonic Technol. Lett. 3, 459 (1991).
[1.12]C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, & P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005).
[1.13]C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, & S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Let. 29, 439 (2004).
[1.14]J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, & S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photon. Technol. Lett. 19, 595(2007).
[1.15]K. Y. Huang, K. Y. Hsu, & S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” IEEE J. Lightwave Technol. 26, 1632(2008).
[1.16]K. Y. Huang, K. Y. Hsu, D. Y.Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, & S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Exp. 16, 12264(2008).
[1.17]L. M. Lee, S. C. Pei, D. F. Lin, M. C. Tsai, T. M. Tai, P. C. Chiu, D. H. Sun, A. H. Kung, & S. L. Huang, “Generation of tunable blue–green light using ZnO periodically poled lithium niobate crystal fiber by self-cascaded second-order nonlinearity,” J. Opt. Soc. Am. B 24, 1909 (2007).
[1.18]D. H. Yoon, “Crystal growth of the oxide fiber single crystal for optical applications,” Opto-electronics Rev. 12, 199 (2004).
[1.19]Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q switches,” Prog. Quantum Electron. 28, 249 (2004).
[1.20]S. Kuck, “Laser-related spectroscopy of ion-doped crystal for tunable solid-state lasers,” Appl. Phys. B: Lasers and Optics 72, 515 (2001).
[1.21]A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287 (2002).
[1.22]P. Rudolph, & T. Fukuda, “Fiber crystal growth from the melt,” Cryst. Res. Technol. 34, 3 (1999).
[1.23]C. W. Lan, C. H. Tsai, “Modeling of ellipsoid mirror furnace for floating-zone crystal growth,” J. Cryst. Growth 173, 561 (1997).
[1.24]R. P. Poplawsky, “Free crystals using an arc image furnace,” J. Appl. Phys. 33, 1616 (1961).
[1.25]D. B. Gasson, & B. Cockayne, “Oxide crystal growth using gas lasers,” J. Mater. Sci. 5, 100 (1970).
[1.26]M. M. Fejer, J. L. Nightingale, G. A.Magel, & R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791(1984).
[1.27]R. S. Feigelson, W. L. Kway, & R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102 (1985)..
[1.28]R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669 (1986).
[1.29]W. M. Yen, “Synthesis, Characterization and applications of shaped single crystals,” Phys. Solid State 41, 770 (1999).
[1.30]S. R. Coriell, S. C. Hardy, & M. R. Cordes, “Stability of liquid zones,” J. Colloid Interface Sci. 60, 126 (1977).
[1.31]S. R. Coriell, & M. R. Cordes, “Modeling the time-dependent growth of single-crystal fibers ,” J. Cryst. Growth 42, 466 (1977).
[1.32]G. Li, Z. Liu, & Y. Lin, “Preliminary research on the shape of molten zone in LHPG method,” J. Synthetic Cryst. 22, 32 (1993).
[1.33]E. Robert, Jr. Green. “Governing equations for the shapes of the molten zones,” J. Appl. Phys. 35, 1297 (1964).
[1.34]K. M. Kim, A. B. Dreeben, & A. Schujko, “Maximum stable zone length in float-zone growth of small-diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472 (1979).
[1.35]D. R. Ardila, L. V. Cofré, L. B. Barbosa, & J. P. Andreeta, “Study of floating zone profiles in materials grown by the laser-heated pedestal growth technique under isostatic atmosphere,” Cryst. Res. Technol. 39, 855 (2004).
[1.36]M. K. Ermakov, M. S. Ermakova, “Linear-stability analysis of thermocapillary convection in liquid bridges with highly deformed free surface,” J. Cryst. Growth 266, 160 (2004).
[1.37]H. Takanori, U. Ichiro, K. Hiroshi, Y. Shinichi, “Numerical simulation of thermocapillary convection in a half-zone liquid bridge with dynamic free surface deformation,” American Physical Society, Division of Fluid Dynamics 56th Annual Meeting, (2003).
[1.38]M. Prange, M. Wanschura, H. C. Kuhlmann and H. J. Rath, “Linear stability of thermocapillary convection in cylindrical liquid bridges under axial magnetic _elds,” J. Fluid Mech. 394, 281 (1999).
[1.39]J. L. Duranceau, & R. A. Brown, “Thermal-capillary analysis of small-scale floating zone: steady-state calculations,” J. Cryst. Growth 75, 367 (1986).
[1.40]G. W. Young, & A. Chait, “Steady-state thermal-solutal diffusion in a float zone,” J. Cryst. Growth 96, 65 (1989).
[1.41] Z. Kozhoukharova & S. Slavchev, “Computer simulation of the thermalocapillary convection in a non-cylindricl floating zone,” J. Cryst. Growth 74, 236 (1986).
[1.42] K. H. Lie, J. S. Walker, & D. N. Riahi, “Proceedings of the first congress in fluid dynamics,” Physico-Chemical Hydrodynamics 10, 441(1988).
[1.43]K. H. Lie & J. S. Walker, “Buoyancy and surface tension driven flows in float zone crystal growth with a strong axial magnetic field ,” Int. J. Heat Mass Transfer 32, 2409(1989)
[1.44] D. N. Riahi & J. S. Walker, “Float zone shape and stability with the electromagnetic body force due to a radio-frequency induction coil,” J. Cryst. Growth 94, 635 (1989).
[1.45]C. W. Lan & S. Kou, “Thermocapllary flow and melt/solid interfaces in floating-zone crystal growth under microgravity,” J. Cryst. Growth 102, 1043(1990).
[1.46]C. W. Lan & S. Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 108, 351 (1991).
[1.47]M. M. Fejer, PhD dissertation, Stanford University, US., (1986).
[1.48]R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669(1986).
[1.49]G. W. Young & J. A. Heminger, “Modeling the time-dependent growth of single-crystal fibers,” J. Cryst. Growth 178, 410 (1997).
[1.50]J. Gu, Y. Shen, S. Chen & W. Zhao, “Molten Zone Controlling Technique of Single Crystal Fiber by Means of LHPG Growth,” J. Mater. Sci. Eng. 19, 20 (2001).
[1.51]G. Li & L. Liu, “Dynamical analysis of single crystal fiber growth in LHPG method,” J. Synthetic Cryst. 24, 208 (1995).
[1.52] M. J. P. Nijmeijer & D. P. Landau, “Simulation of optical fiber growth in three dimensions,” Computational Mater. Sci. 7, 325 (1997).
[2.1]A. Laaksonen, V. Talanquer, and D. W. Oxtoby, “Nucleation: Measurements, theory, and atmospheric applications,” Ann. Rev. Phys. Chem. 46, 489 (1995).
[2.2]M. C. Flemings, “Solidification Processing,” McGraw-Hill, New York, (1974).
[2.3]W. Kurz, D. J. Fisher, “Fundamentals of Solidification,” Trans Tech, Switzerland, (1984).
[2.4]W. G. Pfann, “Zone Melting, 2nd Edition,” Wiley, New York, (1966).
[2.5]G. Müller, “Crystal growth from the melt,” Springer, Berlin, (1988)
[2.6]W. G. Pfann & K. M. Olsen, “Purification and prevention of segregation in single crystals of germanium,” Phys. Rev. 89, 322 (1953).
[2.7]W. G. Pfann, “Continuous multistage separation by zone-melting,” J. Metals, 7, 297 (1955).
[2.8]G. F. Bolling & W. A. Tiller, “Growth from the melt. I. Influence of surface intersections in pure metals,” J. Appl. Phys. 31, 1345 (1960).
[2.9]L. A. Jacobson, J. McKittrick, “Rapid solidification processing,” Mater. Sci. Engr. R 11 , 355 (1994).
[2.10]K. Y. Huang, , K. Y. Hsu, , D. Y. Jheng, , W. J. Zhuo, , P. Y. Chen, , P. S. Yeh, & S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique” Opt. Exp. 16, 12264 (2008).
[2.11] S. Ishibashi,., K. Naganuma, & I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal growth by the laser-heated pedestal growth method,” J. Cryst. Growth 183, 614 (1998).
[2.12]C. Y. Lo, PhD dissertation, National Sun Yat-sen University, Taiwan, “R. O. C. (2004)”.
[2.13]C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, , Y. S. Lin, & P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005).
[2.14]V. J. Fratello and C. D. Brandle, “Physical properties of a Y3A15O12 melt,” J. Cryst. Growth 128, 1006 (1993).
[2.15]J.J. Derby and R.A. Brown, “On the dynamics of Czochralski crystal growth,” J. Cryst. Growth 83, 137 (1987).
[2.16]J.A.S. Ikeda, V.J. Fratello and C.D. Brandle, “Viscosity and density measurements of molten lithium niobate,” J. Cryst. Growth 92, 271 (1988).
[2.17]V.J. Fratello and C.D. Brandle, “Thermophysical properties of a LiCaAlF6 melt ,” J. Cryst. Growth 109, 334 (1991).
[2.18]W. D. Kingery, “Thermal conductivity: XIV, conductivity of multicomponent systems,” J. Am. Ceram. Soc. 42, 617 (1959).
[2.19]P. Rudolph & T. Fukuda, “Fiber crystal growth from the melt,” Cryst. Res. Technol. 34, 3 (1999).
[2.20]R. S Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669 (1986).
[2.21]K. M. Kim, A. B. Dreeben & A. Schujko, “Maximum stable zone length in float-zone growth of small-diameter sapphire and silicon crystals”, J. Appl. Phys. 50, 4472 (1979).
[2.22]K. Shimamura, S. Uda, T. Yamada, S. Sakaguchi & T. Fukuda, “Silicon single crystal fiber growth by micro pulling down method,” Jpn. J. Appl. Phys. 35, L793 (1996 ).
imensions,” Computational Mater. Sci. 7, 325 (1997).
[3.1]王茂齡,“輸送現象”,高麗圖書有限公司,2001年。
[3.2] H. K. Versteeg, W. Malalasekera, “An introduction to computational fluid dynamics/ The finite volume method,” Longman Group., England, (1995),
[3.3]J. O. Hirschfelder, C. F. Curtiss & R. B. Bird, “The molecular theory of gases and liquids,” Wiley, New York (1954).
[3.4]S. M. Karim & L. Rosenhead, “The Second Coefficient of Viscosity of Liquids and Gases,” Revs. Mod. Phys. 24, 108 (1952)
[3.5]J. Crank, “The mathematics of diffuse,” Oxford, Clarendon (1979).
[3.6]H. S. Carslaw and J. C. Jaeger, “Operational methods in applied mathematics,” Oxford, Clarendon (1941).
[3.7]C. W. Lan & S. Kou, “Thermocapllary flow and melt/solid interfaces in floatinf-zone crystal growth under microgravity,” J. Cryst. Growth 102, 1043 (1990).
[3.8]C. W. Lan & Sindo Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 108, 351 (1991).
[4.1]C. W. Lan & S. Kou, “Thermocapllary flow and melt/solid interfaces in floatinf-zone crystal growth under microgravity,” J. Cryst. Growth 102, 1043 (1990).
[4.2] C. W. Lan & S. Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 108, 351 (1991).
[4.3]C. W. Lan, “Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace,” J. Cryst. Growth 169, 269 (1996).
[4.4]S. Brandon & J. J. Derby, “Heat transfer in vertical Bridgman growth of oxides: effects of conduction,” J. Cryst. Growth 121, 473 (1992).
[4.5]V. J. Fratello & C. D. Brandle, “Physical properties of a Y3A15O12 melt,” J. Cryst. Growth 128, 1006 (1993).
[4.6]C. W. Lan & C. Y. Tu, “Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals,” J. Cryst. Growth 223, 523(2001).
[4.7]J. L. Duranceau, & R. A. Brown, “Thermal-capillary analysis of small-scale floating zone: steady-state calculations,” J. Cryst. Growth 75, 367 (1986).
[4.8]D. Rivas, J. Sanz & C. Vázquez, “Temperature field in a cylindrical crystal heated in a mono-ellipsoid mirror furnace,” J. Cryst. Growth 116, 127 (1992).
[4.9]M. M. Fejer, J. L. Nightingale, G. A. Magel & R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791 (1984).
[4.10]J. W. Goodman, “Introduction to Fourier Optics,” McGraw Hill, San Francisco (1968).
[4.11]L. H. Liu, H. P. Tan & Q. Z. Yu, “Internal distribution of radiation absorption in one-dimensional semitransparent medium,” Int. J. Heat Mass Transfer 45, 417 (2002).
[4.12]J. P. Longtin & C. L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” International Journal of Heat and Mass Transfer 40, 951 (1997).
[4.13]H. D. Block, “Introduction to tensor analysis,” C. E. Merrill Books, New York (1962).
[4.14]J. F. Thompson, F. C. Thames & C. W. Mastin, “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies,” J. Comp. Phys. 15, 299 (1974).
[4.15]C. W. Lan & S. Kou, “Radial dopant segregation in zero-gravity floating-zone crystal growth,” J. Cryst. Growth 132, 578 (1993).
[4.16]C. W. Lan, “Newton’s method for solving heat transfer, fluid flow and interface shapes in a floatinf zone,” Int. J. Numer. Methods Fluids 19, 41 (1994).
[4.17]A. D. Gosman, W. M. Pan, A. K. Runchal, D. B. Spalding & M. Wolfshtein, “Heat and mass transfer in recirculating flows,” Academic, London (1969).
[4.18]C. W. Lan & S. Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 114, 517(1991).
[5.1]C. W. Lan & C. Y. Tu, “Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals” J. Cryst. Growth, 223, 523(2001).
[5.2] D. Schwabe, R. R. Sumathi & H. Wilke, “An experimental and numerical effort to simulate the interface deflection of YAG,” J. Cryst. Growth, 265, 440 (2004).
[5.3]J. Gu, Y. Shen, S. Chen & W. Zhao, “Molten zone controlling technique of single crystal fiber by means of LHPG growth,” J. Mater. Sci. Eng. 19, 20 (2001).
[5.4]G. W. Young & J. A. Heminger, “Modeling the time-dependent growth of single-crystal fibers,” J. Cryst. Growth, 178, 410 (1997).
[6.1]F. P. Incropera & D. P. DeWitt, “Fundamentals of heat and mass transfer, Press. 4th,” John Wiley & Sons., Canada (1996)
[6.2] N. Kobayashi, “Steady convection caused by the temperature inhomogeneity in a cylindrical floating zone,” Jpn. J. Appl. Phys. 27, 20 (1988).
[6.3]G. W. Young and J. A. Heminger, “Modeling the time-dependent growth of single-crystal fibers,” J. Cryst. Growth 178, 410 (1997).
[7.1]L. Hesselink and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fibers,” Opt. Lett. 13, 877 (1988).
[7.2] Brian Henderson and Ralph H. Bartram, “Crystal-field engineering of solid-state laser materials,” Cambridge University Press, 83 (2000)
[7.3]C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004).
[7.4]P. Y. Chen, C. L. Chang, K. Y. Huang, C. W. Lan, W. H. Cheng, and S. L. Huang, “Experiment and simulation on interface shapes of yttrium-aluminium-garnet miniature molten zone formed using laser-heated pedestal growth method for single crystal fibres,” to be published in J. Appl. Cryst. 42, (2009).
[7.5]K. Y. Huang, K. Y. Hsu, & S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” IEEE J. Lightwave Technol. 26, 1632 (2008).
[7.6]K. Y. Huang, K. Y. Hsu, D. Y.Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, & S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Exp. 16, 12264 (2008).
[7.7]C. W. Lan, C. J. Chen, “Dynamic three-dimensional simulation of facet formation and segregation in Bridgman crystal growth,” J. Cryst. Growth 303, 287 (2007).
[7.8]J. C. Chen, K. Y. Huang, C. Nan Tsai, Y. S. Lin, C. C. Lai, G. Y. Liu, F. J. Kao, S. L. Huang, C. Y. Lo, Y. S. Lin, and P. Shen, “Composition dependence of the micro-spectroscopy of Cr ions in double-clad Cr:YAG crystal fiber,” J. of Appl. Phys. 99, 093113 (2006).
[7.9]J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” J. Cryst. Growth 274, 522 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔