|
[1.1]H. J. Scheel, “Historical aspects of crystal growth technology,” J. Cryst. Growth 211, 1 (2000). [1.2]J. Czochralski, “Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle,” Z. Phys. Chemie 92, 219 (1918). [1.3]G. K. Teal and J. B. Little, “Growth of germanium single crystals,” Phys. Rev. 78, 647 (1950). [1.4]G. Müller, “Review: The Czochralski method - where we are 90 years after Jan Czochralski′s invention,” Cryst. Res. Technol. 42, 1150 (2007). [1.5]J. C. Legros, “Development of numerical code for the study of marangoni convection,” MRC, Bruxelles ( 2004). [1.6]R. S. Feigelson, “Opportunities for Research on Single-crystal Fibers,” Mater. Sci. Eng. B 1, 67 (1988). [1.7]J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, & F. Gonthier, “Tapered single-mode fibres and devices Part 1 : Adiabaticity criteria,” IEE Proc. J. Optoelecton. 138, 343 (1991). [1.8]C. N. Tsai, Y. S. Lin, K. Y. Huang, Y. S. Lin, C. C. Lai, and S. L. Huang, “Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber with pre-growth perimeter deposition,” Jpn. J. Appl. Phys. 47, 6369 (2008). [1.9]M. J. F. Digonnet, C. J. Gaeta & H. J. Shaw, “1.064- and 1.32-mm Nd:YAG Single Crystal Fiber Lasers,” IEEE J. Lightwave Technol. LT-4, 454 (1986). [1.10]C. Y. Lo, P. L. Huang, T. S. Chou, L. M. Lee, T. Y. Chang, S. L. Huang, L. Lin, H. Y. Lin & F. C. Ho, “Efficient Nd:Y3Al5O12 crystal fiber laser,” Jpn. J. Appl. Phys. 41, L1228 (2002).. [1.11]G. M. Davis, I. Yokohama, S. Sudo, K. Kubodera, “1.3-microns Nd:YAG crystal fiber amplifiers,” IEEE Photonic Technol. Lett. 3, 459 (1991). [1.12]C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, & P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005). [1.13]C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, & S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Let. 29, 439 (2004). [1.14]J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, & S. L. Huang, “400-nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photon. Technol. Lett. 19, 595(2007). [1.15]K. Y. Huang, K. Y. Hsu, & S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” IEEE J. Lightwave Technol. 26, 1632(2008). [1.16]K. Y. Huang, K. Y. Hsu, D. Y.Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, & S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Exp. 16, 12264(2008). [1.17]L. M. Lee, S. C. Pei, D. F. Lin, M. C. Tsai, T. M. Tai, P. C. Chiu, D. H. Sun, A. H. Kung, & S. L. Huang, “Generation of tunable blue–green light using ZnO periodically poled lithium niobate crystal fiber by self-cascaded second-order nonlinearity,” J. Opt. Soc. Am. B 24, 1909 (2007). [1.18]D. H. Yoon, “Crystal growth of the oxide fiber single crystal for optical applications,” Opto-electronics Rev. 12, 199 (2004). [1.19]Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q switches,” Prog. Quantum Electron. 28, 249 (2004). [1.20]S. Kuck, “Laser-related spectroscopy of ion-doped crystal for tunable solid-state lasers,” Appl. Phys. B: Lasers and Optics 72, 515 (2001). [1.21]A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287 (2002). [1.22]P. Rudolph, & T. Fukuda, “Fiber crystal growth from the melt,” Cryst. Res. Technol. 34, 3 (1999). [1.23]C. W. Lan, C. H. Tsai, “Modeling of ellipsoid mirror furnace for floating-zone crystal growth,” J. Cryst. Growth 173, 561 (1997). [1.24]R. P. Poplawsky, “Free crystals using an arc image furnace,” J. Appl. Phys. 33, 1616 (1961). [1.25]D. B. Gasson, & B. Cockayne, “Oxide crystal growth using gas lasers,” J. Mater. Sci. 5, 100 (1970). [1.26]M. M. Fejer, J. L. Nightingale, G. A.Magel, & R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791(1984). [1.27]R. S. Feigelson, W. L. Kway, & R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng. 24, 1102 (1985).. [1.28]R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669 (1986). [1.29]W. M. Yen, “Synthesis, Characterization and applications of shaped single crystals,” Phys. Solid State 41, 770 (1999). [1.30]S. R. Coriell, S. C. Hardy, & M. R. Cordes, “Stability of liquid zones,” J. Colloid Interface Sci. 60, 126 (1977). [1.31]S. R. Coriell, & M. R. Cordes, “Modeling the time-dependent growth of single-crystal fibers ,” J. Cryst. Growth 42, 466 (1977). [1.32]G. Li, Z. Liu, & Y. Lin, “Preliminary research on the shape of molten zone in LHPG method,” J. Synthetic Cryst. 22, 32 (1993). [1.33]E. Robert, Jr. Green. “Governing equations for the shapes of the molten zones,” J. Appl. Phys. 35, 1297 (1964). [1.34]K. M. Kim, A. B. Dreeben, & A. Schujko, “Maximum stable zone length in float-zone growth of small-diameter sapphire and silicon crystals,” J. Appl. Phys. 50, 4472 (1979). [1.35]D. R. Ardila, L. V. Cofré, L. B. Barbosa, & J. P. Andreeta, “Study of floating zone profiles in materials grown by the laser-heated pedestal growth technique under isostatic atmosphere,” Cryst. Res. Technol. 39, 855 (2004). [1.36]M. K. Ermakov, M. S. Ermakova, “Linear-stability analysis of thermocapillary convection in liquid bridges with highly deformed free surface,” J. Cryst. Growth 266, 160 (2004). [1.37]H. Takanori, U. Ichiro, K. Hiroshi, Y. Shinichi, “Numerical simulation of thermocapillary convection in a half-zone liquid bridge with dynamic free surface deformation,” American Physical Society, Division of Fluid Dynamics 56th Annual Meeting, (2003). [1.38]M. Prange, M. Wanschura, H. C. Kuhlmann and H. J. Rath, “Linear stability of thermocapillary convection in cylindrical liquid bridges under axial magnetic _elds,” J. Fluid Mech. 394, 281 (1999). [1.39]J. L. Duranceau, & R. A. Brown, “Thermal-capillary analysis of small-scale floating zone: steady-state calculations,” J. Cryst. Growth 75, 367 (1986). [1.40]G. W. Young, & A. Chait, “Steady-state thermal-solutal diffusion in a float zone,” J. Cryst. Growth 96, 65 (1989). [1.41] Z. Kozhoukharova & S. Slavchev, “Computer simulation of the thermalocapillary convection in a non-cylindricl floating zone,” J. Cryst. Growth 74, 236 (1986). [1.42] K. H. Lie, J. S. Walker, & D. N. Riahi, “Proceedings of the first congress in fluid dynamics,” Physico-Chemical Hydrodynamics 10, 441(1988). [1.43]K. H. Lie & J. S. Walker, “Buoyancy and surface tension driven flows in float zone crystal growth with a strong axial magnetic field ,” Int. J. Heat Mass Transfer 32, 2409(1989) [1.44] D. N. Riahi & J. S. Walker, “Float zone shape and stability with the electromagnetic body force due to a radio-frequency induction coil,” J. Cryst. Growth 94, 635 (1989). [1.45]C. W. Lan & S. Kou, “Thermocapllary flow and melt/solid interfaces in floating-zone crystal growth under microgravity,” J. Cryst. Growth 102, 1043(1990). [1.46]C. W. Lan & S. Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 108, 351 (1991). [1.47]M. M. Fejer, PhD dissertation, Stanford University, US., (1986). [1.48]R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669(1986). [1.49]G. W. Young & J. A. Heminger, “Modeling the time-dependent growth of single-crystal fibers,” J. Cryst. Growth 178, 410 (1997). [1.50]J. Gu, Y. Shen, S. Chen & W. Zhao, “Molten Zone Controlling Technique of Single Crystal Fiber by Means of LHPG Growth,” J. Mater. Sci. Eng. 19, 20 (2001). [1.51]G. Li & L. Liu, “Dynamical analysis of single crystal fiber growth in LHPG method,” J. Synthetic Cryst. 24, 208 (1995). [1.52] M. J. P. Nijmeijer & D. P. Landau, “Simulation of optical fiber growth in three dimensions,” Computational Mater. Sci. 7, 325 (1997). [2.1]A. Laaksonen, V. Talanquer, and D. W. Oxtoby, “Nucleation: Measurements, theory, and atmospheric applications,” Ann. Rev. Phys. Chem. 46, 489 (1995). [2.2]M. C. Flemings, “Solidification Processing,” McGraw-Hill, New York, (1974). [2.3]W. Kurz, D. J. Fisher, “Fundamentals of Solidification,” Trans Tech, Switzerland, (1984). [2.4]W. G. Pfann, “Zone Melting, 2nd Edition,” Wiley, New York, (1966). [2.5]G. Müller, “Crystal growth from the melt,” Springer, Berlin, (1988) [2.6]W. G. Pfann & K. M. Olsen, “Purification and prevention of segregation in single crystals of germanium,” Phys. Rev. 89, 322 (1953). [2.7]W. G. Pfann, “Continuous multistage separation by zone-melting,” J. Metals, 7, 297 (1955). [2.8]G. F. Bolling & W. A. Tiller, “Growth from the melt. I. Influence of surface intersections in pure metals,” J. Appl. Phys. 31, 1345 (1960). [2.9]L. A. Jacobson, J. McKittrick, “Rapid solidification processing,” Mater. Sci. Engr. R 11 , 355 (1994). [2.10]K. Y. Huang, , K. Y. Hsu, , D. Y. Jheng, , W. J. Zhuo, , P. Y. Chen, , P. S. Yeh, & S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique” Opt. Exp. 16, 12264 (2008). [2.11] S. Ishibashi,., K. Naganuma, & I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal growth by the laser-heated pedestal growth method,” J. Cryst. Growth 183, 614 (1998). [2.12]C. Y. Lo, PhD dissertation, National Sun Yat-sen University, Taiwan, “R. O. C. (2004)”. [2.13]C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, , Y. S. Lin, & P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129 (2005). [2.14]V. J. Fratello and C. D. Brandle, “Physical properties of a Y3A15O12 melt,” J. Cryst. Growth 128, 1006 (1993). [2.15]J.J. Derby and R.A. Brown, “On the dynamics of Czochralski crystal growth,” J. Cryst. Growth 83, 137 (1987). [2.16]J.A.S. Ikeda, V.J. Fratello and C.D. Brandle, “Viscosity and density measurements of molten lithium niobate,” J. Cryst. Growth 92, 271 (1988). [2.17]V.J. Fratello and C.D. Brandle, “Thermophysical properties of a LiCaAlF6 melt ,” J. Cryst. Growth 109, 334 (1991). [2.18]W. D. Kingery, “Thermal conductivity: XIV, conductivity of multicomponent systems,” J. Am. Ceram. Soc. 42, 617 (1959). [2.19]P. Rudolph & T. Fukuda, “Fiber crystal growth from the melt,” Cryst. Res. Technol. 34, 3 (1999). [2.20]R. S Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669 (1986). [2.21]K. M. Kim, A. B. Dreeben & A. Schujko, “Maximum stable zone length in float-zone growth of small-diameter sapphire and silicon crystals”, J. Appl. Phys. 50, 4472 (1979). [2.22]K. Shimamura, S. Uda, T. Yamada, S. Sakaguchi & T. Fukuda, “Silicon single crystal fiber growth by micro pulling down method,” Jpn. J. Appl. Phys. 35, L793 (1996 ). imensions,” Computational Mater. Sci. 7, 325 (1997). [3.1]王茂齡,“輸送現象”,高麗圖書有限公司,2001年。 [3.2] H. K. Versteeg, W. Malalasekera, “An introduction to computational fluid dynamics/ The finite volume method,” Longman Group., England, (1995), [3.3]J. O. Hirschfelder, C. F. Curtiss & R. B. Bird, “The molecular theory of gases and liquids,” Wiley, New York (1954). [3.4]S. M. Karim & L. Rosenhead, “The Second Coefficient of Viscosity of Liquids and Gases,” Revs. Mod. Phys. 24, 108 (1952) [3.5]J. Crank, “The mathematics of diffuse,” Oxford, Clarendon (1979). [3.6]H. S. Carslaw and J. C. Jaeger, “Operational methods in applied mathematics,” Oxford, Clarendon (1941). [3.7]C. W. Lan & S. Kou, “Thermocapllary flow and melt/solid interfaces in floatinf-zone crystal growth under microgravity,” J. Cryst. Growth 102, 1043 (1990). [3.8]C. W. Lan & Sindo Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 108, 351 (1991). [4.1]C. W. Lan & S. Kou, “Thermocapllary flow and melt/solid interfaces in floatinf-zone crystal growth under microgravity,” J. Cryst. Growth 102, 1043 (1990). [4.2] C. W. Lan & S. Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 108, 351 (1991). [4.3]C. W. Lan, “Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace,” J. Cryst. Growth 169, 269 (1996). [4.4]S. Brandon & J. J. Derby, “Heat transfer in vertical Bridgman growth of oxides: effects of conduction,” J. Cryst. Growth 121, 473 (1992). [4.5]V. J. Fratello & C. D. Brandle, “Physical properties of a Y3A15O12 melt,” J. Cryst. Growth 128, 1006 (1993). [4.6]C. W. Lan & C. Y. Tu, “Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals,” J. Cryst. Growth 223, 523(2001). [4.7]J. L. Duranceau, & R. A. Brown, “Thermal-capillary analysis of small-scale floating zone: steady-state calculations,” J. Cryst. Growth 75, 367 (1986). [4.8]D. Rivas, J. Sanz & C. Vázquez, “Temperature field in a cylindrical crystal heated in a mono-ellipsoid mirror furnace,” J. Cryst. Growth 116, 127 (1992). [4.9]M. M. Fejer, J. L. Nightingale, G. A. Magel & R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791 (1984). [4.10]J. W. Goodman, “Introduction to Fourier Optics,” McGraw Hill, San Francisco (1968). [4.11]L. H. Liu, H. P. Tan & Q. Z. Yu, “Internal distribution of radiation absorption in one-dimensional semitransparent medium,” Int. J. Heat Mass Transfer 45, 417 (2002). [4.12]J. P. Longtin & C. L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” International Journal of Heat and Mass Transfer 40, 951 (1997). [4.13]H. D. Block, “Introduction to tensor analysis,” C. E. Merrill Books, New York (1962). [4.14]J. F. Thompson, F. C. Thames & C. W. Mastin, “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies,” J. Comp. Phys. 15, 299 (1974). [4.15]C. W. Lan & S. Kou, “Radial dopant segregation in zero-gravity floating-zone crystal growth,” J. Cryst. Growth 132, 578 (1993). [4.16]C. W. Lan, “Newton’s method for solving heat transfer, fluid flow and interface shapes in a floatinf zone,” Int. J. Numer. Methods Fluids 19, 41 (1994). [4.17]A. D. Gosman, W. M. Pan, A. K. Runchal, D. B. Spalding & M. Wolfshtein, “Heat and mass transfer in recirculating flows,” Academic, London (1969). [4.18]C. W. Lan & S. Kou, “Heat transfer, fluid flow and interface shapes in floating-zone crystal growth,” J. Cryst. Growth 114, 517(1991). [5.1]C. W. Lan & C. Y. Tu, “Three-dimensional simulation of facet formation and the coupled heat flow and segregation in Bridgman growth of oxide crystals” J. Cryst. Growth, 223, 523(2001). [5.2] D. Schwabe, R. R. Sumathi & H. Wilke, “An experimental and numerical effort to simulate the interface deflection of YAG,” J. Cryst. Growth, 265, 440 (2004). [5.3]J. Gu, Y. Shen, S. Chen & W. Zhao, “Molten zone controlling technique of single crystal fiber by means of LHPG growth,” J. Mater. Sci. Eng. 19, 20 (2001). [5.4]G. W. Young & J. A. Heminger, “Modeling the time-dependent growth of single-crystal fibers,” J. Cryst. Growth, 178, 410 (1997). [6.1]F. P. Incropera & D. P. DeWitt, “Fundamentals of heat and mass transfer, Press. 4th,” John Wiley & Sons., Canada (1996) [6.2] N. Kobayashi, “Steady convection caused by the temperature inhomogeneity in a cylindrical floating zone,” Jpn. J. Appl. Phys. 27, 20 (1988). [6.3]G. W. Young and J. A. Heminger, “Modeling the time-dependent growth of single-crystal fibers,” J. Cryst. Growth 178, 410 (1997). [7.1]L. Hesselink and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fibers,” Opt. Lett. 13, 877 (1988). [7.2] Brian Henderson and Ralph H. Bartram, “Crystal-field engineering of solid-state laser materials,” Cambridge University Press, 83 (2000) [7.3]C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett. 29, 439 (2004). [7.4]P. Y. Chen, C. L. Chang, K. Y. Huang, C. W. Lan, W. H. Cheng, and S. L. Huang, “Experiment and simulation on interface shapes of yttrium-aluminium-garnet miniature molten zone formed using laser-heated pedestal growth method for single crystal fibres,” to be published in J. Appl. Cryst. 42, (2009). [7.5]K. Y. Huang, K. Y. Hsu, & S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” IEEE J. Lightwave Technol. 26, 1632 (2008). [7.6]K. Y. Huang, K. Y. Hsu, D. Y.Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, & S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Exp. 16, 12264 (2008). [7.7]C. W. Lan, C. J. Chen, “Dynamic three-dimensional simulation of facet formation and segregation in Bridgman crystal growth,” J. Cryst. Growth 303, 287 (2007). [7.8]J. C. Chen, K. Y. Huang, C. Nan Tsai, Y. S. Lin, C. C. Lai, G. Y. Liu, F. J. Kao, S. L. Huang, C. Y. Lo, Y. S. Lin, and P. Shen, “Composition dependence of the micro-spectroscopy of Cr ions in double-clad Cr:YAG crystal fiber,” J. of Appl. Phys. 99, 093113 (2006). [7.9]J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” J. Cryst. Growth 274, 522 (2005).
|