(3.238.96.184) 您好!臺灣時間:2021/05/08 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林奕圻
研究生(外文):I-chi Lin
論文名稱:由聚苯乙烯模板法製備二氧化鋯摻雜鉻的有序孔洞材料和性質鑑定
論文名稱(外文):Synthesis and characterization of chromium-doped ordered porous zirconia by polystyrene template
指導教授:許子建許子建引用關係
指導教授(外文):Tzu-Chien Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:相變化聚苯乙烯二氧化鋯孔洞材料中孔洞摻雜
外文關鍵詞:50nmmesoporous materialstetragonalCrmonoclinicZrO2polystyrenesol-gel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鋯本身是一個寬能隙的過渡金屬氧化物,是石油工業中用來變形、脫氫、異構化的常見催化劑,同時它的高能隙值和氧化還原特性也能讓它成為一個絕佳的光觸媒,進而消滅或減低各種污染物。本實驗目的是要製作出摻雜鉻的二氧化鋯高比面積的有序中孔洞材料。
加入鉻的作用是能使二氧化鋯避免高溫時發生麻田散鐵相變化(Martensitic transformation)造成的體積膨脹縮收,否則會導致材料體的破裂而讓孔洞結構崩塌,並使機械性質變差。
首先,利用無乳化聚合(未添加任何交聯劑)製備聚苯乙烯球,並能控制球體大小,已能產出直徑200 nm 以下的聚苯乙烯球。隨後依靠重力沉降法排列聚苯乙烯模板,並用zirconium n-propoxide、n-propanol、acetylacetone、和chromium(III) nitrate nonahydrate配precursor,再將precursor滲入模板待其乾燥後,用固定的溫度持溫十小時燒結移除模板。
使用SEM SEI觀察孔洞在precursor濃度變化、不同溫度燒結以及不同摻雜量的情形,且用XRD和Raman分析二氧化鋯的結晶型態。發現燒結溫度越高時,孔洞結構會產生崩塌的現象,而隨著鉻的摻雜量的上升,二氧化鋯的結晶相保留在tetragonal,並發現不產生相變化對維持孔洞結構有一定程度的幫助,因為沒有相變化帶來的體積膨脹縮收破壞結構。隨後使用了EDS單點分析和Mapping得知鉻有成功地摻雜入二氧化鋯四周。
最後使用BET 比表面積分析儀得知樣品平均比表面積在19 ~ 21 m2/g,和一般的塊材(0.001 m2/g)比較起來有優異的差異性,並從儀器數據證實樣品的孔洞直徑平均落在25 ~ 45nm的範圍,與SEM SEI觀察的結果相印證,且証實比表面積隨著摻雜有所提升。
Zirconia is a metal oxide with high band gap. It is commonly used as catalysts in many industrial practices. In recent years, its high-energy-gap value and redox properties also render it as an excellent photocatalyst, which can eliminate or reduce a variety of pollutants. The purpose of this work is to prepare and characterize the chromium-doped ordered porous zirconia. The main purpose of doping chromium into the zirconia is to avoid the Martensitic transformation of zirconia under high temperatures by volume change and pore structure change, thus reducing the cracking and inferior mechanical properties.
With emulsion-free polymerization for the synthesis of polystyrene (PS) particles, controlling the particle diameter less than 200 nm is possible. A polystyrene template is thus produced by gravity sedimentation of these PS particles. Final Cr-doped zirconia is obtained by infiltration of a precursor solution, a mixture consisting of zirconium n-propoxide, n-propanol, acetylacetone, and chromium (III) nitrate nonahydrate, into the PS template, followed by drying and calcination at elevated temperatures. A systematic study on the pore structure and physical properties by XRD and Raman is conducted by varying the precursor concentration, the calcination temperature, and the dopant concentration. The results show that, unlike the pure zirconia, the pore structure of Cr-doped zirconia remains stable under higher calcination temperatures. Without any phase transformation, the doped Cr, evidenced from the EDS mapping, tends to help stabilize the zirconia at tetragonal phase. The average surface area and pore diameter of Cr-doped zirconia from BET measurement are 19 ~ 21 m2/g and 25 -45 nm, far better than the bulk zirconia. The improved surface properties are also confirmed by SEM observations.
摘要 I
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
第一章 介紹 1
1.1 前言 1
1.2 二氧化鋯 2
1.3 溶膠-凝膠反應 7
1.4 中孔洞材料 (MESOPOROUS MATERIALS) 9
1.5 聚苯乙烯球的製作 11
1.5.1 有乳化劑下的聚合 12
1.5.2 無乳劑下的聚合 13
1.5.3 兩種聚合的比較 14
1.6 研究動機 15
第二章 文獻回顧 16
2.1 以聚苯乙烯為模板的孔洞材料 16
2.2 二氧化鋯的孔洞材料 17
2.3 以光催化為應用主題的二氧化鋯POWDER研究 21
第三章 實驗方法 23
3.1 化學藥品 23
3.2 實驗流程 24
3.3 合成方法 25
3.3.1 合成單一尺寸聚苯乙烯球 25
3.3.2 以重力沉降法排列模板 26
3.3.3 利用溶膠凝膠法製備Cr-doped ZrO2孔洞材料 28
3.4 儀器介紹和製作試片方法 29
3.4.1 XRD繞射儀 (Bede D1 HR-XRD) 29
3.4.2掃描式電子顯微鏡 (SEM6700F) 29
3.4.3 BET 比表面積分析儀(ASAP 2010) 30
3.4.4 Raman (JOBIN-YVON T64000 Micro-Raman Spectroscopy) 31
第四章 實驗結果與討論 32
4.1 製造單一尺寸聚苯乙烯球 32
4.2 燒結和滲入參數對二氧化鋯孔洞材料的影響 33
4.2.1 precursor滲入模板次數的影響 33
4.2.2 precursor濃度對孔洞結構的影響 34
4.2.3 煅燒溫度對孔洞結構的影響 36
4.3 摻雜鉻對二氧化鋯孔洞材料的影響 39
4.3.1 燒結溫度固定為600 oC 39
4.3.2 燒結溫度固定為500 oC 42
4.3.3 燒結溫度固定為400 oC 46
4.4 SEM EDS & MAPPING 分析元素分布 49
4.5 以BET分析孔洞直徑和比表面積 51
第五章 結論 56
參考文獻 58
附錄1 JCPDS-ICDD 62
附錄2 IUPAC的吸脫附曲線和遲滯曲線類型 64
1.Pieck, C. L.; Banares, M. A.; Fierro, J. L. G. J. Catal. 2004, 224, 1.
2.Wang, S. B.; Murata, K.; Hayakawa, T.; Hamakawa, S.; Suzuki, K. Energy Fuels 2001, 15, 384.
3.Schattka, J. H.; Shchukin, D. G.; Jia, J. G.; Antonietti, M.; Caruso, R. A. Chem. Mater. 2002, 14, 5103.
4.Reddy, V. R.; Hwang, D. W.; Lee, J. S. Korean J. Chem. Eng., 2003, 20, 1026.
5.Mills, A.; Le Hunte, S. J. Photochem. Photobiol. A: Chem. 1997, 108, 1-35.
6.Yan, L.; Qing, Y.; Wei, J. M.; Xu, B. Q. Chinese J. Catal. 2004,, 25, 326.
7.Navio, J. A.; Hidalgo, M. C.; Colon, G.; Botta, S. G.; Litter, M. I., Langmuir 2001, 17, 202.
8.Pieck, C. L.; del Val, S.; Granados, M. L.; Banares, M. A.; Fierro, J. L. G. Langmuir 2002, 18, 2642.
9.Anpo, M.; Nomura, T.; Kondo, J.; Domen, K.; Maruya, K. I., Onishi, T. Res. Chem. Intermed. 1990, 13, 195.
10.Parida, K. M.; Samantaray, S. K.; Mishra, H. K. J. Colloid Interface Sci. 1999, 216, 127-133.
11.Gao, X.; Wachs, I. E. Catal. Today 1999, 51, 233-254.
12.Maity, S. K.; Rana, M. S.; Bej, S. K.; Ancheyta-Jua′rez, J.; Dhar, G. M.; Rao, T. S. R. P. Catal. Lett. 2001, 72, 115-119.
13.Lai, S. Y.; Pan, W.; Ng, C. F. Appl. Catal. B 2000, 24, 207- 217.
14.Klimova, T.; Carmona, E.; Ramirez, J. J. Mater. Sci. 1998, 33, 1981-1990.
15.Hannink, R. H. J.; Kelly, P. M.; Muddle, B. C. J. Am. Ceram. Soc. 2000, 83, 461.
16.Caruso, R. A.; Antonietti, M.; Giersig, M.; Hentze, H.-P.; Jia, J. Chem. Mater. 2001, 13, 1114-1123.
17.Tunesi, S.; Anderson, M. J. Phys. Chem. 1991, 95, 3399-3405.
18.Kratochvilova, K.; Hoskovcoca, I.; Jirkovsky, J.; Klima, J., Ludvik, J. Electrochim. Acta 1995, 40, 2603-2609.
19.Meijun Li, Zhaochi Feng, Guang Xiong, Pinliang Ying, Qin Xin, and Can Li, J. Phys. Chem. B 2001, 105, 8107-8111
20.Bala′zs Kra′lik, Eric K. Chang, and Steven G. Louie, PHYSICAL REVIEW B 57, 12, 7027-7036
21.R. H. French et al., Phys. Rev. B 49, 5133 (1994)
22.F. Zandiehnadem, R. A. Murray, and W. Y. Ching, Physica B & C 150, 19 (1988)
23.Z. Dang, B. G. Anderson, Y. Amenomiya, B. A. Morrow, J. Phys. Chem., 99, 14437 (1995).
24.P. E. Marti, M. Maciejewski, A. Baiker, J. Catal., 139, 494 (1993).
25.R. L. Varma, N. N. Bakhshi, J. F. Mathews, S. H. Ng, Ind. Eng. Chem. Res., 26, 183 (1987).
26.X. Liu, D. Cui, Q. Wang, Y. Li, Y. Guo, Mater. Chem. Phys, 105, 208 (2007).
27.R. Valero, B. Durand, J.L. Guth, T. Chopin, MicroporousMesoporous Mater., 29, 311(1999).
28.S. M. Chang, R. A. Doong, Thin Solid Films., 489, 17 (2005).
29.J. P. Hoogenboom, D. Derks, P. Vergeer, A. Blaaderen, J. Chem. Phys., 117, 11320 (2002).
30.Z. Liu, Z. Jin, W. Li, J. Qiu, J. Zhao, X. Liu, Appl. Surf. Sci, 252. 5002 (2006).
31.Brinker, C. J.; Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego, 1990
32.Livage, J.; Henry, M.; Sanchez, C., Prog. Solid State. Chem. 1988, 18, 259.
33.Klein, L. C. E., : Park Ridge, Sol-Gel Technology. Noyes Publications. NJ, 1988.
34.Hench, L. L.; West, J. K., Chem. Rev 1990, 90, 33.
35.Ying, J. Y.; Mehnert, C. P.; Wong, M. S., Angew. Chem. Int. Ed. 1999, 38, 56.
36.Raman, N. K.; Anderson, M. T.; Brinker, C. J., Chem. Mater. 1996, 8, 1682.
37.Sayari, A.; Liu, P., Microporous Mater. 1997, 12,, 149.
38.M. Baldi, E. Finocchio, F. Milella, G. Busca, Applied Catalysis B : Environmental 16(1998) 43-51
39.Y.-C. Chien , H. Paul Wang , S.-H. Liu , T.L. Hsiung, H.-S. Tai , C.-Y. Peng, Journal of Hazardous Materials 151 (2008) 461–464
40.Bert M. Weckhuysen, Israel E. Wachs, and Robert A. Schoonheydt, Chem. Rev. 1996, 96, 3327-3349
41.國立中山大學材料與光電學系 高立衡 博士論文
42.McCusker, L. B.; Baerlocher, E. J.; Bulow, M., Zeolites 1991, 11, 308.
43.Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder, C., Nature 1988, 331, 698.
44.López, C., Adv. Marter. 2003, 15, 1679.
45.Velev, O. D.; Kaler, E. W., Adv. Mater. 2000, 12, 531.
46.Xia, Y.; Gate, B.; Yin, Y.; Lu, Y., Adv. Mater. 2000, 12, 693.
47.Kulinowski, K. M.; Jiang, P.; Vaswani, H.; Colvin, V. L., Adv. Mater. 2000, 12, 833.
48.Velev, O. D.; Lenhoff, A. M., Curr. Opin. Colloid In. 2000, 5, 56.
49.Stein, A., Micropor. Mesopor. Mat. 2001, 44, 227.
50.Stein, A.; Schroden, R. C., Curr. Opin. Solid. St. M. 2001, 5, 553.
51.Colvin, V. L., MRS Bull. 2001, 26, 637.
52.Braun, P. V.; Wiltzius, P., Curr. Opin. Colloid In. 2002, 7, 116.
53.Hall, N.; Ozin, G., Chem. Comm. 2003, 2639.
54.J. P. Hoogenboom, D. Derks, P. Vergeer, A. Blaaderen, J. Chem. Phys., 117, 11320 (2002).
55.W. C. Preston, J. Phys. Chem., 52, 84 (1948).
56.W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).
57.R. M. Fitch, M. B. Prenosil, K. J. Sprick, J. polym. Sci., 27, 95 (1969).
58.W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).
59.Jan H. Schattka, Dmitry G. Shchukin, Jianguang Jia, Markus Antonietti, Rachel A. Caruso, Chem. Mater. 2002, 14, 5103-5108
60.Fengqiu Tang, Hiroshi Fudouzi, Tetsuo Uchikoshi, Yoshio Sakka, Journal of the European Ceramic Society 24 (2004) 341–344
61.J.A. Navı′o, M.C. Hidalgo, G. Colo′n, S. G. Botta, and M. I. Litter, Langmuir 2001, 17, 202-210
62.Vasant R. Choudhary, Subhabrata Banerjee, Suryakant G. Pataskar, Applied Catalysis A: General 253 (2003) 65–74
63.Sue-min Chang and Ruey-an Doong, J. Phys. Chem. B 2004, 108, 18098-18103
64.C. L. Pieck, S. del Val, M. Lo′pez Granados, M. A. Ban˜ ares, and J. L. G. Fierro, Langmuir 2002, 18, 2642-2648
65.M. Labaki, J.-F. Lamonier, S. Siffert, E.A. Zhilinskaya, A. Abouka‥ıs, Colloids and Surfaces A: Physicochem. Eng. Aspects 227 (2003) 63–75
66.Imhof & D. J. Pine, NATURE 389, 948-951
67.Rick C. Schroden, Mohammed Al-Daous, Christopher F. Blanford, and Andreas Stein, Chem. Mater. 2002, 14, 3305-3315
68.Yanan Fu, Zhengguo Jin, Weijiang Xue, and Zhiping Ge, J. Am. Ceram. Soc., 91 [8] 2676–2682 (2008)
69.Junko Konishi, Koji Fujita, Satoshi Oiwa, Kazuki Nakanishi, and Kazuyuki Hirao, Chem. Mater., 2008, 20 (6)
70.Arpita Sarkar, Susmita Pramanik, Amitava Achariya, and Panchanan Pramanik, Microporous and Mesoporous Materials 115 (2008) 426–431
71.C. Karunakaran , and R. Dhanalakshmi, Solar Energy Materials & Solar Cells 92 (2008) 1315– 1321
72.Fan Qunbo, Wang Fuchi, Zhang Huiling and Zhang Feng, Molecular Simulation Vol. 34, Nos. 10–15, 2008, 1099–1103
73.Masatomo Yashima and Shin Tsunekawa, Acta Cryst. (2006). B62, 161–164
74.D. Vollath1, F. D. Fischer, M. Hagelstein and D. V. Szabo, Journal of Nanoparticle Research (2006) 8:1003–1016
75.Tomas Chraska, Alexander H. King, Christopher C. Berndt, Materials Science and Engineering A286 (2000) 169–178
76.K. S. Mazdiyasni, and J. S. Smith, Journal of the American Ceramic Society, vol. 48, 372-375,1964
77.IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31, pp.578 (1972)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔