(3.236.214.19) 您好!臺灣時間:2021/05/10 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡嘉榮
研究生(外文):Chia-jung Tsai
論文名稱:聚丁二酸二乙酯及其與聚丁二酸二丙酯共聚物的研究
論文名稱(外文):Studies of poly(ethylene succinate) and its copolyesters with poly(trimethylene succinate)
指導教授:陳明陳明引用關係
指導教授(外文):M. Chen
學位類別:博士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:130
中文關鍵詞:通用曲線共聚酯聚丁二酸二乙酯
外文關鍵詞:universal curvepoly(ethylene succinate)copolyester
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚丁二酸二乙酯(PES)、聚丁二酸二丙酯(PTS)及不同組成的共聚酯(PETSAs),可藉由使用四異丙基鈦為觸媒,以直接聚縮和反應合成;由本質粘度與凝膠滲透層析儀(GPC)所得到的結果證明這個方法可成功合成出具有高分子量的聚酯。共聚酯的組成與鏈段分佈可由核磁共振儀(NMR)氫譜與碳譜得到,丁二酸二乙酯(ES)與丁二酸二丙酯(TS)單元的鏈段分佈發現乃是屬於無規的分佈。熱性質乃使用微差式掃瞄熱卡計(DSC)與熱重分析儀(TGA)來測量,所有的共聚酯皆僅得到一個玻璃轉移溫度(Tg),在熱穩定性上也沒有明顯的差異產生。在本研究中嘗試使用偏光顯微鏡(PLM)來測量熱穩定性的方法,在不同的溫度預熔融後,觀察聚酯的等溫球晶成長速率,將速率暴增時的溫度定義為該聚酯的熱裂解溫度(Td);PES與PETSA 95/05的熱裂解溫度為213 C與200 C,比TGA所得的結果低了約35-45 C。
聚酯在低於熔點5-10 C下等溫結晶所得的試片,以X射線繞射儀觀察可以發現在PES含量較多的共聚酯中,僅觀察到PES的晶型,共聚酯中TS單元部分可能排除於結晶之外而位於無規的部分;由X射線繞射儀的結果觀之,隨著TS成分的加入,PES共聚酯的結晶有明顯被抑制的現象產生。對於具可塑性的聚酯使用流變儀進行動態機械性質的測量,隨著TS成分的增加,聚酯的儲存模量有下降的現象,而在Tg以上,可以發現結晶度對儲存模量的影響。
在本研究中也利用等溫與非等溫結晶兩種方法,藉由偏光顯微鏡(PLM)來觀察可結晶聚酯的球晶成長速率,球晶成長速率會隨著TS成分的上升而下降。PES的regime II -III轉移溫度,約發生在71 C,與文獻值非常接近。PETSA 95/05與PETS 80/20的轉移溫度,則分別發生於65.0 C與51.4 C。由非等溫實驗所得的球晶成長速率在此與等溫實驗的結果進行比較,彼此間十分吻合,而由非等溫實驗所得的regime分析結果,也與等溫所得的數據相近。
球晶最大成長速率可藉由Okui所提出的Arrhenius與WLF表示法來表示球晶成長速率公式中的分子傳輸項,由PES的非等溫連續成長速率資料可以建構出PES晶體成長速率的主要曲線,並可由此畫出PES與PES含量較多的共聚酯球晶成長的通用曲線。而聚酯的側向表面自由能、撓曲表面自由能與鏈撓曲所需的功,在本研究中也進行計算。鏈撓曲所需的功會隨著TS成分的上升而逐漸下降。
Poly(ethylene succinate) (PES), poly(trimethylene succinate) (PTS) and their copolyesters with various compositions were synthesized through a direct polycondensation reaction with titanium tetraisopropoxide used as the catalyst. Results obtained from intrinsic viscosity and gel permeation chromatography (GPC) studies have significantly contributed to the preparation of polyesters with high molecular weight. Compositions and sequence distributions of the synthesized copolyesters were determined by analyzing the spectra of 1H NMR and 13C NMR. According to those results, the sequence distributions of ethylene succinate (ES) units and trimethylene succinate (TS) units were found to be random. Thermal properties were then characterized using differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). All copolymers exhibited a single glass transition temperature (Tg). These polyesters did not significantly differ in thermal stability. Next, thermal stability was estimated using polarized light microscopy (PLM). Isothermal growth rates for polyesters were observed after pre-melting at various temperatures. The thermal degradation temperature (Td) was estimated, at which the growth rate for polyesters increased abruptly. The Td value of PES and PETSA 95/05 was found to be 213 and 200 °C, respectively, which was 35−45 °C lower than that determined by TGA.
Wide-angle X-ray diffractograms (WAXDs) were obtained for polyesters that were crystallized isothermally at a temperature 5−10 °C below their melting temperatures. Only the crystal form of PES was appeared in the diffractograms of PES-rich copolyesters. The TS units in polyesters may be excluded and located in the amorphous part of polyesters. WAXD results indicate that incorporating TS units into PES could significantly inhibit the crystallization behavior of the latter. Additionally, dynamic mechanical properties of moldable polyesters were investigated using a Rheometer operated at 1 Hz. Below Tg, incorporating TS units into PES led to a decline in the storage modulus, while above Tg, the effect of crystallinity on the storage modulus could be found.
The sphreulite growth rates for crystallizable polyesters were measured by PLM. The growth rate of polyesters decreased with an increasing moiety of TS units. The regime II→III transition of PES was estimated to occur at ca. 71 °C, which is extremely close to values in the literature. The regime transition of PETSA95/05 and PETSA 80/20 was found to be 65.0 °C and 51.4 °C, respectively. A dynamic crystallization experiment was performed by PLM and compared with time consuming isothermal experiments. Above data closely corresponded to those data points determined in the isothermal experiments. Results of the regime analysis for the continuous data of polyesters closely resembled those of isothermal experiments.
The maximum growth rate was formulated in Arrhenius and WLF expressions for the molecular transport term. A master curve of the crystal growth rate for PES was constructed based on the continuous data of PES. Plotting the reduced growth rates after normalization against the reduced temperatures revealed a universal master curve for PES and two PES-rich copolyesters. Finally, the lateral surface free energy, fold surface free energy and work for chain folding of polyesters were evaluated based on kinetic analysis. According to those results, the works for chain folding decreased with an increasing moiety of TS units.
Contents…………….………………………………………………………………….I
List of Schemes..……………………………………………………….…………….III
List of Tables..……………………………...…………………………………….......IV
List of Figures…..……………………..…………………………………………......VI
Abstract (Chinese)……………………………………………………………………X
Abstract……………………………………………………………………….……XII
Chapter 1
Introduction……………………………..……………………………....…1
1.1 Background…...……………….……………………………………..........1
1.2 Purposes of this study…..……………………….…………….....………5
Chapter 2
Literature review………………………………………………………......6
2.1 Synthesis of polyesters…………………………..……………..……...…6
2.2 Crystal structures…….………………………………………..………...…7
2.3 Spherulite growth rates ……………………………………………………8
2.4 Regime transition analysis.... ….…...…………………………………..11
2.5 Relationships for crystal growth rate to temperature…………………….13
2.6 Evaluation of works for chain folding……...……………….………… 15
2.7 Copolyesters……………………………………………………………16
2.7.1 Fox equation……………………………………………………..18
2.7.2 Johnson equation…………………………………………………..18
Chapter 3
Experimental………………………………..……………………………20
3.1 Materials…..………………………………………………………….…20
3.2 Synthesis………..………………………………………………….……20
3.3 Characterization..………………………...……………………………….21
3.3.1 Measurements of molecular weights ..………………………..…21
3.3.2 Measurements of intrinsic viscosity..….………………………..…21
3.3.3 Analyses of chemical micorstructures…………….……………….21
3.3.4 Measurements of melting temperature (Tm) and glass transition temperature (Tg)………...…………………………………………22
3.3.4.1 Preparation of specimens………………………………...22
3.3.4.2 Measurements of Tm…………………………………......22
I
3.3.4.3 Measurements of Tg……………………………………..23
3.3.5 Thermal stability…………………………………………………...23
3.3.5.1 Measurements by thermogravimetric analyzer (TGA)..….23
3.3.5.2 Analysis by polarized light microscope (PLM)…...………23
3.3.6 Wide-angle X-ray diffraction……………………………………23
3.3.7 Dynamic mechanical analysis………..……………………………24
3.4 Morphology andmeasurements of growth rates…………………….....…24
3.4.1 Isothermal method…………………………………………………24
3.4.2 Non-isothermal method…………………………………………....25
Chapter 4
Results and discussion………………………………………………..……26
4.1 Modifications for synthesis………………………..……………………..26
4.2 Intrinsic viscosity and molecular weights………………..………....……27
4.3 Compositions and sequence distribution…………...….…..……………..28
4.4 Thermal properties………..………………………….……..………….…30
4.4.1 Melting temperature (Tm)………………………….…...………...30
4.4.2 Glass transition temperature (Tg)………….……………………..31
4.5. Thermal stability………………………………………………………...32
4.5.1 TGA results……...……...………………………………………….32
4.5.2 PLM studies……..….………………………………………...……33
4.6 Crystal patterns...……………………….………………………………34
4.7 Dynamic mechanical properties..……..………….……………………35
4.8 Spherulite growth rate…………………………………………………....36
4.8.1 Growth rate determined from isothermal method………………....36
4.8.2 Growth rates determined from non-isothermal method…………...37
4.9 Regime transition analysis………………………………………………41
4.9.1 Isothermal results…………………………………………………41
4.9.2 Non-isothermal results……………………………………………..42
4.10 Master and universal curves…………………..……………………….43
4.11 Works for chain folding..……………..………………………………...45
Chapter 5
Conclusions…………………........................................................…........49
References…………....................................................................................................51
Publications……………………………………………………………………….114
[1]
Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci 1998;23: 1273-1335.
[2]
Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym Adv Technol 1997;8:203-209.
[3]
Carothers WH. Polymerization. Chem Rev 1931;8:353-425.
[4]
Takiyama E, Harigai N, Hokari T. Production of aliphatic polyester. JP Patent H5-70566, Mrach 23; 1993.
[5]
Takiyama E, Seki S. Production of aliphatic polyester. JP Patent H5-70572, March 23; 1993.
[6]
Takiyama E, Fujimaki T, Seki S, Hokari T, Hatano Y. Method for manufacturing biodegradable high molecular aliphatic polyester. US Patent 5,310,782, May 10; 1994.
[7]
Takiyama E, Hatano Y, Fujimaki T, Seki S, Hokari T, Hosogane T, Harigai N. Method of producing a high molecular weight aliphatic polyester and film thereof. US Patent 5,436,056, July 25; 1995.
[8]
Fujimaki T. Processability and properties of aliphatic polyesters, “BIONOLLE”, synthesized by polycondensation reaction. Polym Degrad Stab 1998;59:209-214.
[9]
Doi Y, Steiunbchel A. Biopolymers, vol. 3b. Wiley-VCH Verlag. Weinheim, Germany, 2001, chapter 10.
[10]
Gan Z, Abe H, Doi Y. Biodegradable poly(ethylene succinate) (PES). 1. crystal growth kinetics and morphology. Biomacromolecules 2000;1:704-712.
[11]
Gan Z, Abe H, Doi Y. Biodegradable poly(ethylene succinate) (PES). 2. crystal morphology of melt-crystallized ultrathin film and its change after enzymatic degradation. Biomacromolecules 2000;1:713-720.
[12]
Qiu Z, Ikehara T, Nishi T. Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state. Polymer 2003;44:5429-5437.
[13]
Qiu Z, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 2003;44:7781-7785.
[14]
Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 2005;46: 12081-12092.
[15]
Bikiaris DN, Papageorgiou GZ, Achilias DS. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym Degrad Stab, 2006;91:31-43.
[16]
Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochim Acta, 2005;435:142-150.
[17]
Gan Z, Abe H, Doi Y. Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol % ethylene succinate) copolyester. Biomacromolecules 2001;2:313-321.
[18]
Gan Z, Abe H, Kurokawa H, Doi Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001;2:605-613.
[19]
Ahn BD, Kim SH, Kim YH, Yang JS. Synthesis and characterization of the biodegradable copolymers from succinic acid and aliphatic acid with 1,4-butanediol. J Appl Polym Sci 2001;82:2808-2826.
[20]
Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stab 2001;74: 263-270.
[21]
Kuwabara K, Gan Z, Nakamura T, Abe H, Doi Y. Molecular mobility and phase structure of biodegradable poly(butylene succinate) and poly(butylene succinate-co-butylene adipate). Biomacromolecules 2002;3:1095-1100.
[22]
Zhu C, Zhang Z, Liu Q, Wang Z, Jin J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 2003;90:982-990.
[23]
Cao A, Okamura T, Nakayama K, Inoue Y, Masuda T. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co- ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002;8:107-117.
[24]
Cao A, Okamura T, Ishiguro C, Nakayama K, Inoue Y, Masuda T. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)s. Polymer 2002;43:671-679.
[25]
Kim MN, Kim KH, Jin HJ, Park JK, Yoon JS. Biodegradability of ethyl and n-octyl branched poly(ethylene adipate) and poly(butylene succinate). Eur Polym J 2001;37:1843-1847.
[26]
Chae HG, Park SH, Kim BC, Kim DK. Effect of methyl substitution of the ethylene unit on the physical properties of poly(butylene succinate). J Polym Sci Part B: Polym Phys 2004;42:1759-1766.
[27]
Oishi A, Nakano H, Fujita K, Yuasa M, Taguchi Y. Copolymerization of poly(butylene succinate) with 3-alkoxy-1,2-propanediols. Polym J 2002;34: 742-747.
[28]
Mani R, Bhattacharya M, Leriche C, Nie L, Bassi S. Synthesis and characterization of functional aliphatic copolyesters. J Polym Sci Part A: Polym Chem 2002;40:3232-3239.
[29]
Nikolic MS, Poleti D, Djonlagic J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. Eur Polym J 2003;39:2183-2192.
[30]
Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y. Structure effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s. Macromolecules 1997;30:7403-7407.
[31]
Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym Degrad Stab 2004;85:855-863.
[32]
Iwata T, Doi Y, Isono K, Yoshida Y. Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate). Macromolecules 2001;34:7343-7348.
[33]
Cho K, Lee J, Kwon K. Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J Appl Polym Sci 2001;79: 1025-1033.
[34]
Batista A, Aponta MA, Diaz E. Comparison of the catalytic activity of PHB-depolymerase, yeast lipase, and papain on poly(ethylene adipate), poly(ethylene succinate), and poly (3-hydroxybutyric acid)-co-(3-hydroxyl valeric acid). J Polym Sci Part A: Polym Chem 1999;37:2581-2585.
[35]
Slaugh LH, Weider PR. Process for making 3-hydroxypropanal and 1,3-propanediol. US Patent 5,256,827, October 26; 1993.
[36]
Haynie SL, Wagner LW. Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures. US Patent 5,599,689, February 4; 1997.
[37]
Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G. Process for the biological production of 1,3-propanediol with high titer. US Patent 6,514,733 B1, February 4; 2003.
[38]
Traub HL, Hirt P, Herlinger H, Oppermann W. Synthesis and properties of fiber-grade poly(trimethylene terephthalate). Die Angew Makromol Chem 1995; 230:179-187.
[39]
Xiu ZL, Song BH, Wang ZT, Sun LH, Feng EM, Zeng AP. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochem Eng J 2004;19:189-197.
[40]
Chen X, Zhang D-J, Qi W-T, Gao S-J, Xiu Z-L, Xu P. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Microbiol Biotechnol 2003;63:143-146.
[41]
Hartlep H, Hussmann W, Prayitno N, Meynial-Salles I, Zeng A-P. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 2002;60:60-66.
[42]
Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 2003;14:454-459.
[43]
Carothers WH, Arvin JA. Studies on polymerization and ring formation. II. poly-esters. J Am Chem Soc 1929;51:2560-2570.
[44]
Yoo Y, Ko MS, Han SI, Kim TY, IM S, Kim DK. Degradation and phsical properties of aliphatic copolyesters derived from mixed diols. Polym J 1998;30:538-545.
[45]
Ranucci R, Liu Y, Lindblad MS, Albertsson A-C. New biodegradable polymer from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromol Rapid Commun 2000;21:680-684.
[46]
Liu Y, Ranucci R, Lindblad MS, Albertsson A-C. New biodegradable polymer from renewable sources: polyester-carbonates based on 1,3-propylene-co-1,4- cyclohexanedimethylene succinate. J Polym Sci Part A: Polym Chem 2001; 39:2508-2519.
[47]
Bikiaris DN, Achilias DS. Synthesis of poly(alkylene succinate) biodegradable
polyesters I. mathematical modeling of the esterification reaction. Polymer 2006; 47:4851-4860.
[48]
Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation kinetics of the biodegradable polyester, poly(propylene succinate). Polym Degrad Stab 2006;91:60-68.
[49]
Papageorgiou GZ, Bikiaris DN. Biodegradable poly(alkylene succinate) blends: thermal behaviour and miscibility study. J Polym Sci Part B: Polym Phys 2006; 44:584-597.
[50]
Papageorgiou GZ, Bikiaris DN, Achilias DS. Effect of molecular weight on the cold-crystallization of biodegradable poly(ethylene succinate). Thermochimica Acta 2007;457:41-54.
[51]
Okui N. Theoretical aspect of crystallization temperature at maximum crystal growth rate. Polym J 1987; 19: 1309-1315.
[52]
Okui N. Maximum crystal growth rate and its corresponding state. Polym Bull 1990;23:111-118.
[53]
Okui N. Relationship between crystallization temperature and melting temperature in crystalline materials. J Mater Sci 1990;25:1623-1631.
[54]
Umemoto S, Kobayashi N, Okui N. Molecular weight dependence of crystal growth rate and its degree of supercooling effect. J Macromol Sci Part-B Phys 2002;B41:923-938.
[55]
Umemoto S, Okui N. Master curve of crystal growth rate and its corresponding state in polymeric materials. Polymer 2002;43:1423-1427.
[56]
Umemoto S, Hayashi R, Kawano R, Kikutani T, Okui N. Molecular weight dependence of primary nucleation rate of poly(ethylene succinate). J Macromol Sci Part-B Phys 2003;B42:421-430.
[57]
Okui N, Umemoto S, Kawano R, Mamun A. Temperature and molecular weight dependencies of polymer crystallization. Lect Notes Phys 2007;714:391-425.
[58]
Song DK, Sung YK. Synthesis and characterization of biodegradable poly(1,4-butanediol succinate). J Appl Polym Sci 1995;56:1381-1395.
[59]
Montaudo G, Rizzarelli P. Synthesis and enzymatic degradation of aliphatic copolyesters. Polym Degrad Stab 2000;70:305-314.
[60]
Oishi A, Zhang M, Nakayama K, Masuda T, Taguchi Y. Synthesis of
poly(butylene succinate) and poly(ethylene succinate) including diglycollate moiety. Polym J 2006;38:710-715.
[61]
Fuller CS, Erickson CL. An x-ray study of some linear polyesters. J Am Chem Soc 1937;59:344-351.
[62]
Fuller CS, Frosch CJ. Further investigation of the chain structure of linear polyesters. J Phys Chem 1938;43:323-334.
[63]
Fuller CS. The investigation of synthetic linear polymers by X-rays. J Phys Chem 1939;43:143-167
[64]
Bunn CW. Molecular structure and rubber-like elasticity II. The stereochemistry of chain polymers. Proc R Soc 1942;A180:67-81.
[65]
Ueda AS, Chatani Y, Tadokoro H. Structure studies of polyesters. IV. molecular and crystal structures of poly(ethylene succinate) and poly(ethylene oxalate). Polym J 1971;2:387-397.
[66]
Ichikawa Y, Washiyama J, Moteki Y, Noguchi K, Okuyama K. Crystal modification in poly(ethylene succinate). Polym J 1995;27:1264-1266.
[67]
Ichikawa Y, Noguchi K, Okuyama K, Washiyama J. Crystal transition mechanisms in poly(ethylene succinate). Polymer 2001;42:3703-3708.
[68]
Iwata T, Doi Y. Crystal structure and biodegradation of aliphatic polyester crystals. Macromol Chem Phys 1999;200:2429-2442.
[69]
Chung CT, Chen M. Spherulite growth rate of poly(ether ether ketone) (PEEK). Polym Prepr 1992;33:420-421.
[70]
Chen M, Chung CT. Analysis of crystallization kinetics of poly(ether ether ketone) by a nonisothermal method. J Polym Sci Part B: Polym Phys 1998; 36:2393-2399.
[71]
Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci 1999;24:917-950.
[72]
Di Lorenzo ML, Cimmino S, Silvestre C. Nonisothermal crystallization of isotactic polypropylene blended with poly(α-pinene). 2. growth rates. Macromolecules 2000;33:3828-3832.
[73]
Di Lorenzo ML. Determination of spherulite growth rate of poly(L-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 2001; 42:9441-9446.
[74]
Di Lorenzo ML. Spherulite growth rates in binary polymer blends. Prog Polym Sci 2003;28:663-689.
[75]
Silvestre C, Cimmino S, Pirozzi B. Morphology of a melt crystallized iPP/HDPE/hydrogenated hydrocarbon resin blend. Polymer 2003;44:4273-4281.
[76]
Ren MQ, Mo ZS, Chen QY, Song JB, Wang SY, Zhang HF, Zhao QX. Crystallization kinetics and morphology of nylon 1212. Polymer 2004;45: 3511-3518.
[77]
Na B, Wang Y, Zhang Q, Fu Q. Shish and its relaxation dependence of re-crystallization of isotactic polypropylene from an oriented melt in the blends with high-density polyethylene. Polymer 2004;45:6245-6260.
[78]
Zhu B, He Y, Asakawa N, Yoshie N, Nishida H, Inoue Y. Polymorphic crystallization and melting-recrystallization behavior of poly(3-hydroxy propionate). Macromolecules 2005;38:6455-6465.
[79]
Zheng Q, Shangguan Y, Yan SK, Song YH, Peng M, Zhang QB. Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys. Polymer 2005;46:3163-3174.
[80]
Lu HY, Peng JS, Chen M, Chang WC, Chen CH, Tsai CJ. Characterization, crystallization kinetics and melting behavior of poly(ethylene succinate-co-21 mol% trimethylene succinate) copolyester. Eur Polym J 2007;43:2630-2640.
[81]
Lu HY, Lu SF, Chen M, Yang CS, Chen CH, Tsai CJ. Characterization, crystallization kinetics, and melting behavior of poly(ethylene succinate) copolyester containing 10 mol% butylene succinate. J Polym Sci Part B: Polym Phys 2008;46:2431-2442.
[82]
Hoffman JD, Davis GT, Lauritzen JI Jr. In: Hannay NB, editor. Treaties on solid state chemistry, vol. 3. New York: Plenum; 1976, Chapter 7.
[83]
Hoffman JD. Regime III Crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 1983;24:3-26.
[84]
Hoffman. JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Nat Bur Stand 1962;66A: 13-28.
[85]
Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am 57
Chem Soc 1955;77:3701-3707.
[86]
Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T. Nonisothermal crystallization kinetics of poly(butylene succinate) and poly(ethylene succinate). Polym J 2004;36:642-646.
[87]
Turnbull D, Fisher JC. Rate of nucleation in condensed system. J Chem Phys 1949;17:71-73.
[88]
Gandica A, Magill JH. A universal relationship for the crystallization kinetics of polymeric materials. Polymer 1972;13:595-596.
[89]
Magill JH, Li HM, Gandica A. A corresponding states equation for crystallization kinetics. J Cryst Growth 1973;19:361-364.
[90]
Privalko XP. Universal relation for polymer crystallization rates from the melt. Polymer 1978;19:1019-1025
[91]
Thomas DG, Staveley LAK. A study of the supercooling of drops of some molecular liquids. J Chem Soc 1952;4569-4577.
[92]
Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1956;1:123-135.
[93]
Johnson NW. Sequence distribution-glass transition effects. III. α-methylstyrene- acrylonitrile copolymers. Macromolecules 1973;6:453-456.
[94]
Tsai CJ, Chang WC, Chen CH, Lu HY, Chen M. Synthesis and characterization of polyesters derived from succinic acid, ethylene glycol and 1,3-propanediol. Eur Polym J 2008;44:2339-2347.
[95]
Flory PJ. Principles of polymer chemistry. Cornell University Press, NY, USA; 1953.
[96]
Yamadera R, Murano M. The determination of randomness in copolyesters by high resolution nuclear magnetic resonance. J Polym Sci Part A-1: Polym Chem 1967;5:2259-2268.
[97]
Newmark RA. Sequence distribution in polyethylene/tetramethylene terephthalate copolyesters by 13C NMR. J Polym Sci Polym Chem 1980; 18:559-563.
[98]
Backson SCE, Kenwright AM, Richards RW. A 13C NMR study of transesterification in mixtures of poly(ethylene terephthalate) and poly(butylene terephthalate). Polymer 1995;36:1991-1998.
[99]
Ko CY, Chen M, Wang HC, Tseng IM. Sequence distribution, crystallization and melting behavior of poly(ethylene terephthalate-co-trimethylene terephthalate) copolyesters. Polymer 2005;46:8752-8762.
[100]
Chen CH, Lu HY, Chen M, Peng JS, Tsai CJ, Yang CS. Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate. J Appl Polym Sci 2009;111:1433-1439.
[101]
Kawashima K, Kawano R, Miyagi T, Umemoto S, Okui N. Morphological changes in flat-on and edge-on lamellae of poly(ethylene succinate) crystallized from molten thin films. J Macromol Sci Phys 2003;B42:889-899.
[102]
Chen M, Chang WC, Lu HY, Chen CH, Peng JS, Tsai CJ. Characterization, crystallization kinetics and melting behavior of poly(ethylene succinate) copolyester containing 5 mol% trimethylene succinate. Polymer 2007;48: 5408-5416.
[103]
Chang WC. Characterization, crystallization, melting and morphology of poly(ethylene succinate), poly(trimethylene succinate) and their copolyesters. Master thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2006.
[104]
Lu HY. Characterization, crystallization, melting and morphology of poly(ethylene succinate), poly(butylene succinate), their blends and copolyesters. Master Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2007.
[105]
Lauritzen JI Jr, Hoffman JD. Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 1973;44:4340-4352.
[106]
Roitman DB, Marand H, Miller RL, Hoffman JD. Kinetics of crystallization and morphology of poly(pivalolactone): regime II → III transition and nucleation constants, J Phys Chem 1989;93:6919-6926.
[107]
Marand H, Hoffman JD. Determination of the fold surface free energy and the equilibrium melting temperature for α-phase poly(pivalolactone) crystals, Macromolecules 1990;23:3682-3687.
[108]
Di Lorenzo ML, Righetti MC. Crystallization of Poly(butylene terephthalate), Polym Eng Sci 2003;43:1889-1894.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔