|
[1] Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci 1998;23: 1273-1335. [2] Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym Adv Technol 1997;8:203-209. [3] Carothers WH. Polymerization. Chem Rev 1931;8:353-425. [4] Takiyama E, Harigai N, Hokari T. Production of aliphatic polyester. JP Patent H5-70566, Mrach 23; 1993. [5] Takiyama E, Seki S. Production of aliphatic polyester. JP Patent H5-70572, March 23; 1993. [6] Takiyama E, Fujimaki T, Seki S, Hokari T, Hatano Y. Method for manufacturing biodegradable high molecular aliphatic polyester. US Patent 5,310,782, May 10; 1994. [7] Takiyama E, Hatano Y, Fujimaki T, Seki S, Hokari T, Hosogane T, Harigai N. Method of producing a high molecular weight aliphatic polyester and film thereof. US Patent 5,436,056, July 25; 1995. [8] Fujimaki T. Processability and properties of aliphatic polyesters, “BIONOLLE”, synthesized by polycondensation reaction. Polym Degrad Stab 1998;59:209-214. [9] Doi Y, Steiunbchel A. Biopolymers, vol. 3b. Wiley-VCH Verlag. Weinheim, Germany, 2001, chapter 10. [10] Gan Z, Abe H, Doi Y. Biodegradable poly(ethylene succinate) (PES). 1. crystal growth kinetics and morphology. Biomacromolecules 2000;1:704-712. [11] Gan Z, Abe H, Doi Y. Biodegradable poly(ethylene succinate) (PES). 2. crystal morphology of melt-crystallized ultrathin film and its change after enzymatic degradation. Biomacromolecules 2000;1:713-720. [12] Qiu Z, Ikehara T, Nishi T. Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state. Polymer 2003;44:5429-5437. [13] Qiu Z, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 2003;44:7781-7785. [14] Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 2005;46: 12081-12092. [15] Bikiaris DN, Papageorgiou GZ, Achilias DS. Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym Degrad Stab, 2006;91:31-43. [16] Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochim Acta, 2005;435:142-150. [17] Gan Z, Abe H, Doi Y. Crystallization, melting, and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol % ethylene succinate) copolyester. Biomacromolecules 2001;2:313-321. [18] Gan Z, Abe H, Kurokawa H, Doi Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001;2:605-613. [19] Ahn BD, Kim SH, Kim YH, Yang JS. Synthesis and characterization of the biodegradable copolymers from succinic acid and aliphatic acid with 1,4-butanediol. J Appl Polym Sci 2001;82:2808-2826. [20] Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stab 2001;74: 263-270. [21] Kuwabara K, Gan Z, Nakamura T, Abe H, Doi Y. Molecular mobility and phase structure of biodegradable poly(butylene succinate) and poly(butylene succinate-co-butylene adipate). Biomacromolecules 2002;3:1095-1100. [22] Zhu C, Zhang Z, Liu Q, Wang Z, Jin J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 2003;90:982-990. [23] Cao A, Okamura T, Nakayama K, Inoue Y, Masuda T. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co- ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002;8:107-117. [24] Cao A, Okamura T, Ishiguro C, Nakayama K, Inoue Y, Masuda T. Studies on syntheses and physical characterization of biodegradable aliphatic poly(butylene succinate-co-ε-caprolactone)s. Polymer 2002;43:671-679. [25] Kim MN, Kim KH, Jin HJ, Park JK, Yoon JS. Biodegradability of ethyl and n-octyl branched poly(ethylene adipate) and poly(butylene succinate). Eur Polym J 2001;37:1843-1847. [26] Chae HG, Park SH, Kim BC, Kim DK. Effect of methyl substitution of the ethylene unit on the physical properties of poly(butylene succinate). J Polym Sci Part B: Polym Phys 2004;42:1759-1766. [27] Oishi A, Nakano H, Fujita K, Yuasa M, Taguchi Y. Copolymerization of poly(butylene succinate) with 3-alkoxy-1,2-propanediols. Polym J 2002;34: 742-747. [28] Mani R, Bhattacharya M, Leriche C, Nie L, Bassi S. Synthesis and characterization of functional aliphatic copolyesters. J Polym Sci Part A: Polym Chem 2002;40:3232-3239. [29] Nikolic MS, Poleti D, Djonlagic J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. Eur Polym J 2003;39:2183-2192. [30] Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y. Structure effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s. Macromolecules 1997;30:7403-7407. [31] Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polym Degrad Stab 2004;85:855-863. [32] Iwata T, Doi Y, Isono K, Yoshida Y. Morphology and enzymatic degradation of solution-grown single crystals of poly(ethylene succinate). Macromolecules 2001;34:7343-7348. [33] Cho K, Lee J, Kwon K. Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J Appl Polym Sci 2001;79: 1025-1033. [34] Batista A, Aponta MA, Diaz E. Comparison of the catalytic activity of PHB-depolymerase, yeast lipase, and papain on poly(ethylene adipate), poly(ethylene succinate), and poly (3-hydroxybutyric acid)-co-(3-hydroxyl valeric acid). J Polym Sci Part A: Polym Chem 1999;37:2581-2585. [35] Slaugh LH, Weider PR. Process for making 3-hydroxypropanal and 1,3-propanediol. US Patent 5,256,827, October 26; 1993. [36] Haynie SL, Wagner LW. Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures. US Patent 5,599,689, February 4; 1997. [37] Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G. Process for the biological production of 1,3-propanediol with high titer. US Patent 6,514,733 B1, February 4; 2003. [38] Traub HL, Hirt P, Herlinger H, Oppermann W. Synthesis and properties of fiber-grade poly(trimethylene terephthalate). Die Angew Makromol Chem 1995; 230:179-187. [39] Xiu ZL, Song BH, Wang ZT, Sun LH, Feng EM, Zeng AP. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochem Eng J 2004;19:189-197. [40] Chen X, Zhang D-J, Qi W-T, Gao S-J, Xiu Z-L, Xu P. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Microbiol Biotechnol 2003;63:143-146. [41] Hartlep H, Hussmann W, Prayitno N, Meynial-Salles I, Zeng A-P. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 2002;60:60-66. [42] Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 2003;14:454-459. [43] Carothers WH, Arvin JA. Studies on polymerization and ring formation. II. poly-esters. J Am Chem Soc 1929;51:2560-2570. [44] Yoo Y, Ko MS, Han SI, Kim TY, IM S, Kim DK. Degradation and phsical properties of aliphatic copolyesters derived from mixed diols. Polym J 1998;30:538-545. [45] Ranucci R, Liu Y, Lindblad MS, Albertsson A-C. New biodegradable polymer from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromol Rapid Commun 2000;21:680-684. [46] Liu Y, Ranucci R, Lindblad MS, Albertsson A-C. New biodegradable polymer from renewable sources: polyester-carbonates based on 1,3-propylene-co-1,4- cyclohexanedimethylene succinate. J Polym Sci Part A: Polym Chem 2001; 39:2508-2519. [47] Bikiaris DN, Achilias DS. Synthesis of poly(alkylene succinate) biodegradable polyesters I. mathematical modeling of the esterification reaction. Polymer 2006; 47:4851-4860. [48] Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation kinetics of the biodegradable polyester, poly(propylene succinate). Polym Degrad Stab 2006;91:60-68. [49] Papageorgiou GZ, Bikiaris DN. Biodegradable poly(alkylene succinate) blends: thermal behaviour and miscibility study. J Polym Sci Part B: Polym Phys 2006; 44:584-597. [50] Papageorgiou GZ, Bikiaris DN, Achilias DS. Effect of molecular weight on the cold-crystallization of biodegradable poly(ethylene succinate). Thermochimica Acta 2007;457:41-54. [51] Okui N. Theoretical aspect of crystallization temperature at maximum crystal growth rate. Polym J 1987; 19: 1309-1315. [52] Okui N. Maximum crystal growth rate and its corresponding state. Polym Bull 1990;23:111-118. [53] Okui N. Relationship between crystallization temperature and melting temperature in crystalline materials. J Mater Sci 1990;25:1623-1631. [54] Umemoto S, Kobayashi N, Okui N. Molecular weight dependence of crystal growth rate and its degree of supercooling effect. J Macromol Sci Part-B Phys 2002;B41:923-938. [55] Umemoto S, Okui N. Master curve of crystal growth rate and its corresponding state in polymeric materials. Polymer 2002;43:1423-1427. [56] Umemoto S, Hayashi R, Kawano R, Kikutani T, Okui N. Molecular weight dependence of primary nucleation rate of poly(ethylene succinate). J Macromol Sci Part-B Phys 2003;B42:421-430. [57] Okui N, Umemoto S, Kawano R, Mamun A. Temperature and molecular weight dependencies of polymer crystallization. Lect Notes Phys 2007;714:391-425. [58] Song DK, Sung YK. Synthesis and characterization of biodegradable poly(1,4-butanediol succinate). J Appl Polym Sci 1995;56:1381-1395. [59] Montaudo G, Rizzarelli P. Synthesis and enzymatic degradation of aliphatic copolyesters. Polym Degrad Stab 2000;70:305-314. [60] Oishi A, Zhang M, Nakayama K, Masuda T, Taguchi Y. Synthesis of poly(butylene succinate) and poly(ethylene succinate) including diglycollate moiety. Polym J 2006;38:710-715. [61] Fuller CS, Erickson CL. An x-ray study of some linear polyesters. J Am Chem Soc 1937;59:344-351. [62] Fuller CS, Frosch CJ. Further investigation of the chain structure of linear polyesters. J Phys Chem 1938;43:323-334. [63] Fuller CS. The investigation of synthetic linear polymers by X-rays. J Phys Chem 1939;43:143-167 [64] Bunn CW. Molecular structure and rubber-like elasticity II. The stereochemistry of chain polymers. Proc R Soc 1942;A180:67-81. [65] Ueda AS, Chatani Y, Tadokoro H. Structure studies of polyesters. IV. molecular and crystal structures of poly(ethylene succinate) and poly(ethylene oxalate). Polym J 1971;2:387-397. [66] Ichikawa Y, Washiyama J, Moteki Y, Noguchi K, Okuyama K. Crystal modification in poly(ethylene succinate). Polym J 1995;27:1264-1266. [67] Ichikawa Y, Noguchi K, Okuyama K, Washiyama J. Crystal transition mechanisms in poly(ethylene succinate). Polymer 2001;42:3703-3708. [68] Iwata T, Doi Y. Crystal structure and biodegradation of aliphatic polyester crystals. Macromol Chem Phys 1999;200:2429-2442. [69] Chung CT, Chen M. Spherulite growth rate of poly(ether ether ketone) (PEEK). Polym Prepr 1992;33:420-421. [70] Chen M, Chung CT. Analysis of crystallization kinetics of poly(ether ether ketone) by a nonisothermal method. J Polym Sci Part B: Polym Phys 1998; 36:2393-2399. [71] Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci 1999;24:917-950. [72] Di Lorenzo ML, Cimmino S, Silvestre C. Nonisothermal crystallization of isotactic polypropylene blended with poly(α-pinene). 2. growth rates. Macromolecules 2000;33:3828-3832. [73] Di Lorenzo ML. Determination of spherulite growth rate of poly(L-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 2001; 42:9441-9446. [74] Di Lorenzo ML. Spherulite growth rates in binary polymer blends. Prog Polym Sci 2003;28:663-689. [75] Silvestre C, Cimmino S, Pirozzi B. Morphology of a melt crystallized iPP/HDPE/hydrogenated hydrocarbon resin blend. Polymer 2003;44:4273-4281. [76] Ren MQ, Mo ZS, Chen QY, Song JB, Wang SY, Zhang HF, Zhao QX. Crystallization kinetics and morphology of nylon 1212. Polymer 2004;45: 3511-3518. [77] Na B, Wang Y, Zhang Q, Fu Q. Shish and its relaxation dependence of re-crystallization of isotactic polypropylene from an oriented melt in the blends with high-density polyethylene. Polymer 2004;45:6245-6260. [78] Zhu B, He Y, Asakawa N, Yoshie N, Nishida H, Inoue Y. Polymorphic crystallization and melting-recrystallization behavior of poly(3-hydroxy propionate). Macromolecules 2005;38:6455-6465. [79] Zheng Q, Shangguan Y, Yan SK, Song YH, Peng M, Zhang QB. Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys. Polymer 2005;46:3163-3174. [80] Lu HY, Peng JS, Chen M, Chang WC, Chen CH, Tsai CJ. Characterization, crystallization kinetics and melting behavior of poly(ethylene succinate-co-21 mol% trimethylene succinate) copolyester. Eur Polym J 2007;43:2630-2640. [81] Lu HY, Lu SF, Chen M, Yang CS, Chen CH, Tsai CJ. Characterization, crystallization kinetics, and melting behavior of poly(ethylene succinate) copolyester containing 10 mol% butylene succinate. J Polym Sci Part B: Polym Phys 2008;46:2431-2442. [82] Hoffman JD, Davis GT, Lauritzen JI Jr. In: Hannay NB, editor. Treaties on solid state chemistry, vol. 3. New York: Plenum; 1976, Chapter 7. [83] Hoffman JD. Regime III Crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 1983;24:3-26. [84] Hoffman. JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Nat Bur Stand 1962;66A: 13-28. [85] Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am 57 Chem Soc 1955;77:3701-3707. [86] Qiu Z, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T. Nonisothermal crystallization kinetics of poly(butylene succinate) and poly(ethylene succinate). Polym J 2004;36:642-646. [87] Turnbull D, Fisher JC. Rate of nucleation in condensed system. J Chem Phys 1949;17:71-73. [88] Gandica A, Magill JH. A universal relationship for the crystallization kinetics of polymeric materials. Polymer 1972;13:595-596. [89] Magill JH, Li HM, Gandica A. A corresponding states equation for crystallization kinetics. J Cryst Growth 1973;19:361-364. [90] Privalko XP. Universal relation for polymer crystallization rates from the melt. Polymer 1978;19:1019-1025 [91] Thomas DG, Staveley LAK. A study of the supercooling of drops of some molecular liquids. J Chem Soc 1952;4569-4577. [92] Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1956;1:123-135. [93] Johnson NW. Sequence distribution-glass transition effects. III. α-methylstyrene- acrylonitrile copolymers. Macromolecules 1973;6:453-456. [94] Tsai CJ, Chang WC, Chen CH, Lu HY, Chen M. Synthesis and characterization of polyesters derived from succinic acid, ethylene glycol and 1,3-propanediol. Eur Polym J 2008;44:2339-2347. [95] Flory PJ. Principles of polymer chemistry. Cornell University Press, NY, USA; 1953. [96] Yamadera R, Murano M. The determination of randomness in copolyesters by high resolution nuclear magnetic resonance. J Polym Sci Part A-1: Polym Chem 1967;5:2259-2268. [97] Newmark RA. Sequence distribution in polyethylene/tetramethylene terephthalate copolyesters by 13C NMR. J Polym Sci Polym Chem 1980; 18:559-563. [98] Backson SCE, Kenwright AM, Richards RW. A 13C NMR study of transesterification in mixtures of poly(ethylene terephthalate) and poly(butylene terephthalate). Polymer 1995;36:1991-1998. [99] Ko CY, Chen M, Wang HC, Tseng IM. Sequence distribution, crystallization and melting behavior of poly(ethylene terephthalate-co-trimethylene terephthalate) copolyesters. Polymer 2005;46:8752-8762. [100] Chen CH, Lu HY, Chen M, Peng JS, Tsai CJ, Yang CS. Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate. J Appl Polym Sci 2009;111:1433-1439. [101] Kawashima K, Kawano R, Miyagi T, Umemoto S, Okui N. Morphological changes in flat-on and edge-on lamellae of poly(ethylene succinate) crystallized from molten thin films. J Macromol Sci Phys 2003;B42:889-899. [102] Chen M, Chang WC, Lu HY, Chen CH, Peng JS, Tsai CJ. Characterization, crystallization kinetics and melting behavior of poly(ethylene succinate) copolyester containing 5 mol% trimethylene succinate. Polymer 2007;48: 5408-5416. [103] Chang WC. Characterization, crystallization, melting and morphology of poly(ethylene succinate), poly(trimethylene succinate) and their copolyesters. Master thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2006. [104] Lu HY. Characterization, crystallization, melting and morphology of poly(ethylene succinate), poly(butylene succinate), their blends and copolyesters. Master Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2007. [105] Lauritzen JI Jr, Hoffman JD. Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 1973;44:4340-4352. [106] Roitman DB, Marand H, Miller RL, Hoffman JD. Kinetics of crystallization and morphology of poly(pivalolactone): regime II → III transition and nucleation constants, J Phys Chem 1989;93:6919-6926. [107] Marand H, Hoffman JD. Determination of the fold surface free energy and the equilibrium melting temperature for α-phase poly(pivalolactone) crystals, Macromolecules 1990;23:3682-3687. [108] Di Lorenzo ML, Righetti MC. Crystallization of Poly(butylene terephthalate), Polym Eng Sci 2003;43:1889-1894.
|