|
Chapter 1 [1-1] S. Takagi, T. Mizuno, T.Tezuka, N. Sugiyama, T. Numata, K.Usuda, Y. Moriyama,S. Nakaharai, J. Koga, A. Tanabe, N. Hirashita, and T. Maeda, “Channel structure design, fabrication and carrier transport properties of strained-Si/SiGe-on-insulator(strained-SOI) MOSFETs”, in IEDM Tech. Dig., pp.57-60, December 2003. [1-2] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R, Chau, G. Glass, T, Hoffman,J. Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar,S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, “A logic nanotechnologyfeaturing strained-silicon”, IEEE Electron Device Lett., vol. 25, pp.191-193, April 2004. [1-3] W. Zhao, J.He, R. E. Belford, L. Wernersson, and A. Seabaugh, “Partially depleted SOI MOSFETs under uniaxial tensile strain”, IEEE Trans. Electron Devices, vol. 51, pp.317-323, March 2004. [1-4] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald,31 and D. A. Antoniadis, “Straind silicon MOSFET technology”, in IEDM Tech. Dig., pp.23-26,December 2002. [1-5] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC): A new technique for CMOS-performance enhancement”, IEDM Tech. Dig., pp. 433-436, December 2001. [1-6] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS Drive current reduction caused by transistor layout and trench isolation induced stress”, IEDM Tech. Dig., pp.827-830, December 1999. [1-7] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K.Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M.Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors”, IEDM Tech. Dig., pp.978-980,December 2003. [1-8] A. Steegen, M. Stucchi, A. Lauwers, and K. Maex, “Silicide induced pattern density and orientation dependent transconductance in MOS transistors”, IEDM Tech. Dig., pp.497-500, December 1999. [1-9] S. Maikap, M. H. Liao, F. Yuan, M. H. Lee, C. Huang, S. T. Chang, and C. W. Liu, ”Package-strain-enhanced device and circuit performance”, IEDM Tech. Dig., pp.233-236, December 2004. [1-10] C. Hu, “Device challenges and opportunities”, in Symp. VLSI Tech. Dig., pp.4-5,2004 [1-11] S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando, S. Koyama, S. Kuroki,N.Ikezawa, T. Suzuki, T. Saitoh, and T. Horiuchi, “Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design”, IEDM Tech. Dig., pp.247-250, December 2000. [1-12] C. Zhi-Yuan, M. T. Currie, C. W. Leitz, G. Taraschi, E. A. Fitzgerald, J. L. Hoyt,and D. A. Antoniadis, “Electron mobility nhancement in strained-Si n-MOSFET fabricated on SiGe-on-insulator (SGOI) substrates”, IEEE Electron Device Lett., vol.22, pp.321-323, July 2001. [1-13] S. E. Thompson, G. Sun, K. Wu, J. Kim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs”, IEDM Tech. Dig., pp.221-224, December 2004. [1-14] C. Y. Lu, H. C. Lin, and T. Y. Huang, “Impacts of Uniaxial Compressive Strain on Dynamic Negative Bias Temperature Instability of p-Channel MOSFETs,” Electrochemical and Solid-State Lett., 9 (4) G138-G140, 2006. [1-15] H. R. Rhee, H. Lee, T. Ueno, D. S. Shin, S. H. Lee, Y. Kim, A. Samoilov, P. O. Hansson, M. Kim, H. S. Kim, and N. I. Lee, “Negative Bias Temperature Instability of Carrier-Transport Enhanced pMOSFET with Performance Boosters,” in IEDM Tech. Dig., 2005, pp. 692-695. [1-16] A. Shickova, B. Kaczer, P. Verheyen, G. Eneman, E. San Andres, M. Jurczak, P. Absil, H. Maes, and G. Groeseneken, “Negligible Effect of Process-Induced Strain on Intrinsic NBTI Behavior,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 242-244, March 2007. Chapter 2 [2-1] Shin-ichi et al., “Sub-band structure engineering for advanced CMOS channels”, in Solid-State Electronics, pp.284-69, 2005. [2-2] Takagi S, Koga J, Toriumi A. Tech Dig IEDM 1997:219. [2-3] Takagi S, Hoyt JL, Welser JJ, Gibbons JF. J Appl Phys 1996;80:1567. [2-4] Nakatsuji H, Kamakura Y, Taniguchi K. IEDM Tech Dig 2002:727. [2-5] Fischetti MV, Ren Z, Solomon PM, Yang M, Rim K. J Appl Phys 2003;94:1079. [2-6] E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiOX:” Appl. Pkys. Lett., vol. 15, no. 6, p. 174, 1969. [2-7] H. K. J. Ihantola and J. L. Moll, “Design Theory of a surface field-effect transistor”, Solid State Electron., 7, 426, 1964. [2-8] C. T. Sah, “Characteristics of metal-oxide-semiconductor transistor”, IEEE Tran. Electron Device, ED-11, 324, 1964. [2-9] S. R. Hotstein and F. P. Heiman, “The silicon insulated-gate field-effect transistor”, Proc. IEEE, 51, 1190, 1963. [2-10] J. T. Wallmark and H. Johnson. Field Effect Transistors, Physics, Technology, and Applications, Prentice-Hall. Englewood Clffs, N. J., 1966. [2-11] P. Richman, MOSFET`s and Integrated Circuits, Wiley, New York, 1973. [2-12] J. R. Brews, “Physics of the MOS transistor”, in D. Kahng, Ed., Applied Solid State, Suppl. 2A. Academic, New York, 1981. [2-13] L. L. Chang and H. N. Yu, “The germanium insulate-gate field-effect transistor(FET)”, Prob. IEEE, 53, 316,1965. [2-14] C. W. Wilmsen and S. Szpak, “MOS processing for Ⅲ-Ⅴ compound semiconductors : overview and bibliography”, Thin Solid Film, 46, 17, 1977. [2-15] “Looking ahead to the Year 2000. Technology”, Electronics, 53.(9)530, 1980. [2-16] G. Moore, “VLSI : some fundamental challenges”, IEEE Spectrum, 16(4)30, 1980. [2-17] Deal BE, Sklar M, Grove AS, Snow EH. Characteristics of the surface-state charge (Qss) of thermally oxidized silicon. J Electrochem Soc 1967;114:266. [2-18] Strain RJ, Goetzberger A, Lopez AD. On the formation of surface states during stress aging of thermal Si–SiO2 interfaces. J Electrochem Soc 1973;120:90. [2-19] Frohman-Bentchkowsky D. A fully decoded 2048-bit electrically programmable FAMOS readonly memory. IEEE J Solid State Circuits 1971;6(5):301–6. [2-20] Nakagiri M. Jpn J Appl Phys 1974;13:1619. [2-21] Jeppson KO, Svensson CM. Negative bias stress of MOS devices at high electric fields and degradation of MOS devices. J Appl Phys 1977;48:2004–14. [2-22] Hu C, editor. Nonvolatile semiconductor memories: technology, design, and applications. Piscataway, NJ: IEEE Press; 1991. [2-23] Chaparala P, Shibley J, Lim P. Threshold voltage drift in p-MOSFETs due to NBTI and HCI. In: Proc Int Reliability Workshop, 2000. p. 95–7. [2-24] La Rosa G, et al. NBTI––channel hot carrier effects in p-MOSFETs in advanced CMOS technologies. In: Proc Int Reliability Phys Symp, 1997. p. 282–6. [2-25] Uwasawa K, Yamamoto T, Mogami T. A new degradation mode of scaled p+ polysilicon gate p-MOSFETs induced by bias temperature instability. In: Proc Int Electron Device Meet, 1995. p. 871–4. [2-26] Kimizuka N, Yamamoto T, Mogami T, Yamaguchi K, Imai K, Horiuchi T. The impact of bias temperature instability for direct tunneling ultra-thin gate oxide on MOSFET scaling. In: Proc VLSI Tech Symp, 1999. p. 73–4. [2-27] Yamamoto T, Uwasawa K, Mogami T. Bias temperature instability in scaled p+ polysilicon gate p-MOSFETs. IEEE Trans Electron Devices 1999;46(5):921–6. [2-28] Makabe M, Kubota T, Kitano T. Bias temperature degradation of p-MOSFETs: mechanism and suppression. In: Proc Int Reliability Phys Symp, 2000. p. 205–9. [2-29] Ogawa S, Shiono N. Generalized diffusion–reaction model for the low-field charge build up instability at the Si–SiO2 interface. Phys Rev B 1995;51(7):4218–30. [2-30] Alam M, Weir B, Silverman P. The prospect of using thin oxides for silicon nano transistor. In: Proc Int Workshop on Gate Insulator, 2001. p. 10–3. [2-31] Mahapatra S, Alam MA. A predictive reliability model for PMOS bias temperature degradation. In: Proc Int Electron Device Meet, 2002. p. 505–9. [2-32] Mahapatra S, Bharat Kumar P, Alam MA. A new observation of enhanced bias temperature instability in thin gate oxide p-MOSFETs. In: Proc Int Electron Device Meet, 2003. p. 337–41. [2-33] Mitani Y, Nagamine M, Satake H, Toriumi A. NBTI mechanism in ultra-thin gate dielectric-nitrogen-originated mechanism in SiON. In: Proc Int Electron Device Meet, 2002. p. 509–12. [2-34] Schroder DK, Babcock JA. Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing. J Appl Phys 2003;94:1–18. [2-35] Nishida Y, et al. SoC CMOS technology for NBTI/HCI immune I/O and analog circuits implementing surface and buried channel structures. In: Proc Int Electron Device Meet, 2001. p. 869–72. [2-36] Alam M. A critical examination of the mechanics of dynamic NBTI for p-MOSFETs. In: Proc Int Electron Device Meet, 2003. p. 346–9. [2-37] Chen G, et al. Dynamic NBTI of PMOS transistors and its impact on device lifetime. In: Proc Int Reliability Phys Symp, 2003. p. 196–202. [2-38] Huard V, Monsieur F, Ribes G, Bruyere S. Evidence for hydrogen-related defects during NBTI stress in p-MOSFETs. In: Proc Int Reliability Phys Symp, 2003. p. 178–82. [2-39] Tsujikawa S, et al. Negative bias temperature instability of pMOSFETs with ultra-thin SiON gate dielectrics. In: Proc Int Reliability Phys Symp, 2003. p. 183–8. [2-40] McPherson JW, Khamankar RB, Shanware A. Complementary model for intrinsic time dependent dielectric breakdown in SiO2 dielectrics. J Appl Phys 2000;88(9): 5351–9. [2-41] G. La Rosa, IRPS Tutorial, 2003. [2-42] Blat CE, Nicollian EH, Poindexter EH. Mechanism of negative bias temperature instability. J Appl Phys 1991; 69:1712. [2-43] Liu C-H et al. Mechanism of threshold voltage shift (DVth) caused by negative bias temperature instability (NBTI) in deep submicron pMOSFETs. Jpn J Appl Phys 2002;41: 2423–5. [2-44] Alam M, Bude J, Ghetti A. Field acceleration for oxide breakdown––can an accurate anode hole injection model resolve the E vs. 1=E controversy? In: Proc Int Reliability Phys Symp, 2000. p. 21–6. [2-45] Soon J et al. Study of negative bias temperature-instability-induced defects using first-principle approach. Appl Phys Lett 2003;83:3063–5. [2-46] Tan SS et al. Nitrogen-enhanced negative bias temperature instability: An insight by experiment and first-principle calculations. Appl Phys Lett 2003;82:1881–3. [2-47] Ushio J, Maruizumi T, Abdelghafar KK. Interface structures generated by negative-bias temperature instability in Si/SiO2 and Si/SiOxNy interfaces. Appl Phys Lett 2002;81: 1818–20. [2-48] Reed ML, Plummer JD. Chemistry of Si–SiO2 interface trap annealing. J Appl Phys 1988;63:5776–93. [2-49] J.S. Brugler, and P.G.A. Jespers, “Charge Pumping in MOS Devices”, IEEE Trans. on Electron Devices, vol. 16, pp. 297-302, March 1969. [2-50] P. Heremans, J. Witters, G. Groeseneken,and H. E. Maes, “Analysis of the charge pumping technique and its application for the evaluation of the MOSFET Degradation”, IEEE Tran. Electron Devices, Vol. 36, No. 7, pp. 1318-1335, 1989. [2-51] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Kecrsmaecker, “A reliable approach to charge-pumping measurements in MOS transistors”, IEEE Trans. Electron Devices, Vol. ED-31, pp. 42-53, 1984. [2-52]S. S. Chung, S.-J. Chen, C.-K. Yang, S.-M. Cheng, S.-H. Lin, Y.-C. Sheng, H.-S. Lin, K.-T. Hung, D.-Y. Wu, T.-R. Yew, S.-C. Chien, F.-T. Liou, and F, Wen, “A Novel and Direct Determination of the Interface Traps in Sub-100nm CMOS Devices with Direct Tunneling Regime (12-16A) Gate oxide,” VLSI Tech. Symposium, 2002. [2-53]Pascal Masson, Jean-Luc Autran, and Jean Brini, “On the Tunneling Component of Charge Pumping Current in Ultrathin Gate Oxide MOSFET’s,” Electron Device Lett., pp. 92-94, 1999 [2-54]E. P. Gusev and C. P. D’Emic, ” Charge detrapping in HfO2 high-k gate dielectric stacks,” Appl. Phys. Lett., Vol. 83, pp5223, 2003. Chapter 4 [4-1]T. Guillaume, and M. Mouis, “Calculations of hole mass [110]-uniaxially strained silicon for the stress-engineering of p-MOS transistors,” Solid-State Electronics, 50, pp. 701-708, 2006. [4-2]Dieter K. Schroder, “Negative bias temperature instability: What do we understand,” Microelectronics Reliability, 47, pp. 841-852, 2007. [4-3]S. Ogawa, and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si-SiO2 interface,” Phys. Rev. B, vol. 51, no. 7, pp. 4218-4230, February 1995. [4-4]H. R. Rhee, H. Lee, T. Ueno, D. S. Shin, S. H. Lee, Y. Kim, A. Samoilov, P. O. Hansson, M. Kim, H. S. Kim, and N. I. Lee, “Negative Bias Temperature Instability of Carrier-Transport Enhanced pMOSFET with Performance Boosters,” in IEDM Tech. Dig., 2005, pp. 692-695. [4-5]A. Shickova, B. Kaczer, P. Verheyen, G. Eneman, E. San Andres, M. Jurczak, P. Absil, H. Maes, and G. Groeseneken, “Negligible Effect of Process-Induced Strain on Intrinsic NBTI Behavior,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 242-244, March 2007. [4-6]M. A. Alam, and S. Mahapatra, “A comprehensive model of PMOS NBTI degradation,” Microelectronics Reliability, 45, pp. 71-81, 2005. [4-7]Md. Itrat Bin Shams, Md. Kawsar Alam, and Quazi D. M. Khosru, “Effects of Uniaxial Strain on the Gate Capacitance of Double Gate MOSFETs,” in EDSSC, 2008, pp. 1-4. [4-8]Md. Manzur Rahman, “A Theoretical Study of Electrostatic Properties of <110> Uniaxially Strained Silicon n-Channel MOSFET,” in ICSICT, 2008, pp. 142-145.
|