(35.175.212.130) 您好!臺灣時間:2021/05/18 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:胡育誠
研究生(外文):Yu-cheng Hu
論文名稱:控制規則排列的鐵原子簇聚集在金表面人字型重構的成長
論文名稱(外文):Controlled growth of well-ordered Fe cluster assembled on Au(111) herringbone reconstruction
指導教授:郭建成郭建成引用關係
指導教授(外文):Chien-Cheng Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:金(111)規則排列人字型重構原子簇
外文關鍵詞:STMherringbone reconstructionclusterBLAG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
近幾年,規則排列的奈米團簇吸引了很多的注意,因為它們具有增加材料的催化和鐵磁性居里溫度的能力。然而,使用傳統的鍍膜方法,隨著鍍量的增加,其行為傾向為2D 島狀成長,並形成薄膜狀。這種2D 島限制了之後的各種應用。因此,我們使用一種緩衝層幫助成長的方法來控制在金表面重構成長3D 的鐵原子團簇。這種方法我們可以藉著改變氙氣緩衝層和鐵的鍍量將鐵原子團簇的大小控制在2 到6 奈米。此外,在利用緩衝層方法之前預先鍍上的鐵奈米點會被局限且排列在金人字形重構的轉折點上的特性,來當作成核的位置集中成規則排列的原子團簇。從這結果中可以長出我們想要的大小的3D 鐵原子團簇在特殊的位置。在奈米尺度樣品上使用緩衝層幫助成長的方法有助於我們製備多種規則排列和大小控制的3D 奈米原子團簇。
In the last years, well-ordered nanoclusters attract a lot of attention, because they are effectively used to enhance the catalytic capability and Curie temperature for ferromagnetism. However, in the conventional case, the nucleation sites will form 2-dimensional islands and then grow into films with increasing coverage. This kind of 2-D islands restricts the function for the further applications. Thus, in this report, we controlled the growth of 3-D Fe nanoclusters by the method of buffer layer assisted growth (BLAG) on Au(111) herringbone reconstruction structure. The method of BLAG was used to control the Fe nanoclusters size from 2 to 6 nm by the amount of Xe buffer layer and Fe deposition. In addition, the Fe nanodots are confined and arranged at the turning points of the Au(111) herringbone by Fe seeds before the BLAG method. They can be used as the nucleation sites to assemble the well-order nanoclusters by BLAG. From the result, the size controlled 3-D Fe nanoclusters self-assemble at special point. The method of “BLAG on nano-patterned template” will be very helpful to prepare various 3-D nanoclusters with regular spatial arrangement and to control size of them.
1 簡介1
2 原理及性質3
2.1 薄膜成長行為模式. . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 金(111) 表面結構與性質. . . . . . . . . . . . . . . . . . . . . 6
3 實驗儀器與原理11
3.1 實驗環境-超高真空系統. . . . . . . . . . . . . . . . . . . . . 11
3.1.1 氣體脫附. . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 烘烤與去氣(Degas) 過程. . . . . . . . . . . . . . . . . 14
3.1.3 真空幫浦. . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 真空計. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 清潔表面- 高溫退火(Annealing) . . . . . . . . . . . . . . . 20
3.3 蒸鍍原子-電子束蒸鍍鎗(Electron Beam Evaporator) . . . . 21
3.4 表面量測-掃描穿隧顯微術(Scanning Tunneling Microscopy) 22
3.4.1 電子穿隧效應原理. . . . . . . . . . . . . . . . . . . . . 22
3.4.2 探針. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 掃描頭. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.4 成像原理. . . . . . . . . . . . . . . . . . . . . . . . . . 25
ix
4 實驗結果討論與分析27
4.1 基板樣品蒸鍍. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1 清潔金(111) 表面. . . . . . . . . . . . . . . . . . . . . 27
4.1.2 成長2 維鐵薄膜. . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 在低溫環境下鐵蒸鍍實驗. . . . . . . . . . . . . . . . . 29
4.2 緩衝層幫助成長方法(Buffer Layer Assisted Growth) . . . . 32
4.3 控制規則排列鐵奈米團簇. . . . . . . . . . . . . . . . . . . . . 39
4.4 成核種子影響比較. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 溫度對成長種子的影響. . . . . . . . . . . . . . . . . . 46
4.5 氙氣曝量影響比較. . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 奈米團簇穩定度測試. . . . . . . . . . . . . . . . . . . . . . . . 58
5 結論63
文獻65
[1] J. P. Pierce, M. A. Torija, Z. Gai, J. Shi, T. C. Schulthess, G. A. Farnan,
J. F. Wendelken, E. W. Plummer, and J. Shen, Phys. Rev. Lett. 92,
237201 (2004). 1, 27, 42
[2] K. J. S. W. C. Lin, P. C. Huang and M.-T. Lin, Applied Physics Letters
88, 153117 (2006). 1
[3] N. A. Khan and C. Matranga, Surface Science 602, 932 (2008). 1
[4] R. A. P. N. F. Joseph A. Stroscio, D. T. Pierce, Journal of Vacuum
Science & Technology A 10, 1981 (1992). 1
[5] J. H. WEAVER and G. D. WADDILL, Science 251, 1444 (1991). 1
[6] L. Huang, S. J. Chey, and J. H. Weaver, Physical Review Letters 80,
4095 (1998). 2
[7] H. Bulou, Superlattices and Microstructures 44, 533
(2008), ISSN 0749-6036, e-MRS 2007 Symposium K -
Nanoscale Self-Assembly and Patterning, URL http://www.
sciencedirect.com/science/article/B6WXB-4S0PX1N-1/2/
39b54f5edfbf9de3ea26b6089b65bbb0. 2
65
文獻
[8] J. A. Meyer, I. D. Baikie, E. Kopatzki, and R. J. Behm, Surface
Science 365, L647 (1996), ISSN 0039-6028, URL http:
//www.sciencedirect.com/science/article/B6TVX-3VXHPB3-3H/
2/3b0ace2a16b45da329c2fe59beb18595. 2, 7, 29
[9] H. Luth, Solid Surfaces, Interfaces and Thin Films (2001). 3, 5
[10] S. Herman, Richter, Epitaxy (2004). 4
[11] URL http://ms01.dahan.edu.tw/~cfs/class/plastic/
CH2-thebasicofplastic.ppt. 6
[12] Kittel, Introduction to Solid State Physics (2006). 6
[13] C. W‥ oll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys. Rev. B 39,
7988 (1989). 7
[14] U. Harten, A. M. Lahee, J. P. Toennies, and C. W‥ oll, Phys. Rev. Lett.
54, 2619 (1985). 7, 27
[15] Y. Okwamoto and K. Bennemann, Surface Science
186, 511 (1987), ISSN 0039-6028, URL http://www.
sciencedirect.com/science/article/B6TVX-4KJ6M8G-J/2/
54c8fa273fd7655f261ed6a59fd301bc. 7
[16] M. V. Hove, R. Koestner, P. Stair, J. Bibrian, L. Kesmodel, I. BartoS,
and G. Somorjai, Surface Science 103, 189 (1981), ISSN 0039-
6028, URL http://www.sciencedirect.com/science/article/
B6TVX-46SXMMY-141/2/dfa20a84b979123b6b0ddb4b8e7c8403. 7
66
文獻
[17] Y. Hasegawa and P. Avouris, Science 258, 1763 (1992), http://www.
sciencemag.org/cgi/reprint/258/5089/1763.pdf, URL http://
www.sciencemag.org/cgi/content/abstract/258/5089/1763. 7
[18] J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. B 42, 9307
(1990). 7
[19] H. Bulou and C. Massobrio, The Journal of Physical Chemistry C 112,
8743 (2008), http://pubs.acs.org/doi/pdf/10.1021/jp800758z,
URL http://pubs.acs.org/doi/abs/10.1021/jp800758z. 7
[20] H. Y. Chang, Master’s thesis, NSYSU (2008). 11, 24
[21] Vacuum Technology & Application (Instrument Technology Research
Center, 2001). 12
[22] URL http://www.philiphofmann.net/surflec/node7.html. 19
[23] URL http://www.mcallister.com/ebeam.html. 21
[24] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57
(1982). 22
[25] D. A. Bonnell, ed., Scanning Probe Microscopy and Spectroscopy: Theory,
Techniques, and Application (Jonn Wiley & Sons, Inc., 2000). 23
[26] R. Wiesendanger, ed., Scanning Probe Microscopy Analytical Methods
(Springer-Verlag Berlin Heidelberg New York, 1998). 23
[27] J. P. Ibe, J. P. P. Bey, S. L. Brandow, R. A. Brizzolara, N. A. Burnham,
D. P. DiLella, K. P. Lee, C. R. K. Marrian, and R. J. Colton, Journal
67
of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8,
3570 (1990). 23
[28] M. Baumer and H.-J. Freund, Progress in Surface Science 61, 127
(1999). 24
[29] C. Goyhenex and H. Bulou, Phys. Rev. B 63, 235404 (2001). 29
[30] I. Langmuir, Proceedings of the National Academy of Sciences of the
United States of America 14, 627 (1928). 36
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top