跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭玉麟
研究生(外文):Yu-lin Peng
論文名稱:使用汞燈作為激發光原的光調制反射光譜對於AlGaN/GaN異質結構研究
論文名稱(外文):Photoreflectance of AlGaN/GaN heterostructure measured by using mercury lamp as pump beam
指導教授:王東波王東波引用關係
指導教授(外文):Dong-Po Wan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:Franz-Keldysh 振盪氮化鋁鎵光調制反射光譜
外文關鍵詞:Franz-Keldysh oscillationAlGaNPhotoreflectance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光調制反射光譜(Photoreflectance modulation spectroscopy)的調制原理是利用激發光打在樣品表面上,激發價帶的電子躍遷產生電子電洞對,因此改變樣品表面電場,藉由此來達到調制的目的。不同的樣品有不同的能隙值,所以激發光(pump beam)能量必須大於半導體的能隙。由於本實驗樣品中含有高能隙的材料AlGaN[1] ,以往使用的氦鎘雷射光能量值無法激發材料的電子電洞對,因此須選擇短波長的氬離子雷射(λ=300nm),四倍頻的Nd:YAG雷射(λ=266nm),或是二極體(diode)雷射(λ=262nm)[2-4] 。本實驗我們採用汞燈(λ=254nm)裝置作為調制電場的激發光源,由於汞燈裝置具有短波長、發光效果穩定、購置成本低廉等優點,但其為一擴充光源,以致無法聚焦到一小點,因此無法作為一般光譜如PL(photoluminescence)的激發光源。本實驗樣品為GaN thin film與AlGaN/GaN 異質結構(heterostructure)。此篇論文將利用汞燈與氦鎘雷射作為激發光源,計算樣品內調制電場(δF),比較PR光譜圖有何差變。並且利用汞燈裝置作為激發光源,對AlxGa1-xN/GaN異質結構作PR光譜探測,所得到光譜圖當光能量值大於AlGaN能隙(energy gap)時,將出現Franz-Keldysh oscillation,分析Franz-Keldysh 振盪的極值可以求得AlxGa1-xN中x值與內建電場(built-in electric field)值。
Photoreflectance (PR) spectra of a GaN thin film and an AlGaN/GaN heterostructure were measured by using a HeCd laser or a mercury lamp as a pump beam. The wavelengths (λ) of the HeCd laser and the mercury lamp are 325 nm and 253.7 nm, respectively. The energy of the HeCd laser is lower than band-gap energy of AlxGa1-xN (x > 0.2) so that electron-hole pairs cannot be generated in the AlGaN layer. Hence, the PR of the AlGaN was measured by using Argon ion laser (λ=300 nm) or quadrupled Nd:YAG (λ=266 nm) rather than HeCd laser in the previous works. In this work, the mercury lamp (λ=254 nm)was used as the pump beam. The problem with using the mercury lamp as the pump beam is because it is a diffused source so that it cannot be focused to a small spot. Nevertheless, defocused pump and probe beams were used in the PR measurement to improve signal to noise ratio. Hence, the diffused property of the mercury lamp is not a hindrance to the PR measurements.
第一章 導論及相關理論.......................1
1.1 前言......................................1
1.2 能帶......................................2
1.3 鍵結......................................5
第二章 調制光譜.............................7
2.1 調制光譜之簡介...............................7
2.2 調製光譜學的機制.............................9
2.3 電子躍遷理論...............................10
2.4 界電函數與折射率的關係........................13
2.5 低電場調制.................................16
2.6 中電場調制(穿隧效應).........................19
2.7 Franz-Keldysh Oscillation 與asymptotic form.........22
第三章 樣品介紹與特性分析..................28
3.1 實驗樣品介紹........................................28
3.2 應變的產生..........................................29
3.3 空乏電場(Fd).........................................34
第四章 實驗設計與分析......................38
4.1 實驗架構與調制原理..................................38
4.2 PR不同激發光源調制電場強度(δF)分析.................44
第五章 實驗結果與討論......................47
5.1 PR不同激發光源調制電場強度(δF)計算.................47
5.2 實驗圖形分析........................................51
第六章 結論..............................58
Reference..................................59
1. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002).
2. J. Misiewicz, R. Kudrawiec, M. Syperek, R. Paszkiewicz, B. Paszkiewicz, and M. Tlaczala, Microelectronics, Journal, 36, 442 (2005).
3. H.Takeuchi, Y. Yamamoto, Y. Kamo, T, Kunii, T. Oku, S. Wakaiki, and M. Nakayama, Eur. Phys. J. Appl. Phys. 37, 119 (2007).
4. T. J.Ochalski, A. j. Grzegorczyk , M. Rudzinski, P. K. Larsen , P. O. Oltz , P. Bergman , P. P. Paskov ,Phys. Status Solidi A, 202,1300 (2005).
5. See, for example, K. onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986)
6. A. Zorkovska ,A. Baran , A. Feher ,J. Sebek, E. Santava, I. Bradaric, Act. Phys. Pol. A 113, 351(2008)
7. R. Dingle, W. Wiegman, and C. H. Henry, Phy. Rev. Lett. 33, 827(1974
8. D. Vignaud, X. Wallart, F. Mollot, and B. Sermage, J. Appl. Phys. 84, 2138(1998)
9. S. M. Sze, in Semiconductor devices, physics and technology (Wiley, New York, 2002)
10. Serway. Jewett, in Physics for Scientists and Engineers with Modern Physics, 6th Edition (Thomson, 2004)
11. M. Cardona, in Modulation Spectroscopy (Academic, New York, 1969).
12. D. E. Aspnes, in Handbook on Semiconductors, edited by M.Balkanski (North-Holland, New York, 1980), Vol.2, p. 109.
13. F. H. Pollak, in Hand book on Semiconductors, edited by M. Balkanski(North-Holland, New York, 1994).
14. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
15. See, for example, R. N. Bhattacharya, H. Shen, P. Parayanthal, and F.H. Pollak, Phys. Rev. B 37, 4004 (1988).
16. D. F. Blossey, Phys. Rev. B 2, 3976 (1970)
17. Hartmut Haug, Stephan W. Koch, in Quantum Theory of the Optical and Electronic Properties of Semiconductor Quantum Physics (1994).
18. P. Y. Yu and M. Cardona, in Fundamentals of Semiconductors:Physics and Materials Properties(New York,1996,springer).
19. D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).
20. D. E. Aspnes, Phys. Rev. 166, 921 (1968).
21. D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973).
22. Ming-Fu Li, Modern Semiconductor Quantum Physics (1994).
23. N. Peyghambarian, S. W. Koch and A. Mysyrowicz, Introduction to Semiconductor Optics (1933).
24. T. Aggerstam, M. Sjodin, and S. Lourdudoss, Phys. Status. Solidi C 3, 2373(2006)
25. S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J.Appl. Phys. Lett. 87, 965 (2000)
26. W. Shan, R. J. Hauenstein, A. J. Fischer, and J. J. Song, W. G. Perry, M. D. Bremser, and R. F. Davis, B. Goldenberg, Phys. Rev. B 54, 13460 (1996)
27. Ben G. StreetMan, and Sanjay Banerjee, in Solid state electronic devices, 5th Edition, (Prentice Hall International, 2000).
28. Sze, S. M. in Semiconductor Devices Physics and Technology, 2nd Edition, (J. Wiley, 2002).
29. J. Nelson, The Physics of Solar Cells, Imperial College, London, Chap. 1, (2003).
30. Y. Zhou, D Wang, C Ahyi, C. C. Tin, J. Williams, and M. Park, J. Appl. Phys. 101, 024506 (2007)
31. T. Kawashima, H. Yoshikawa, and S. Adachi J, Appl. Phys. 82, 3528 (1997)
32. J. F. Muth, J. H. Lee, I. K. Shmagin, and R. M. Kolbas , Appl. Phys. Lett. 71, 2572 (1997)
33. D. Huang, D. Mui, and H. Morkoç, J. Appl. Phys. 66, 358 (1989).
34. N. Kallergi, B. Roughani, J. Aubel, and, S. Sundaram, J. Appl. Phys. 68, 4656 (1990).
35. S. R. Kurtz, A. A. Allerman, D. D. Koleske, A. G. Baca, and R. D. Briggs,
J. Appl. Phys. 95, 1888 (2004).
36. A. Drabińska, K. P. Korona, R. Bożek, J. M. Baranowski, K. Pakula, T.
Tomaszewicz, and J. Gronkowski, Phys. Status Solidi C 0, 329 _2002_.
37. A. T. Winzer, R. Goldhahn, G. Gobsch, A. Link, M. Eickhoff, U. Rossow,
and A. Hangleiter, Appl. Phys. Lett. 86, 181912 _2005_.
38. Dong-Po Wang, Chi-Chang Wu, and Chia-Chun Wu, Appl. Phys. Lett. 89, 161903 (2006).
39. X. Yin, X, Guo, F. H.Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin, and C. W. Tu, Appl. Phys. Lett. 60, 1336 (1992).
40. C. H. Chang, D. P. Wang, C. C. Wu, C. L. Hsiao, and L. W. Tu, Appl. Phys. Lett. 87, 202103 (2005).
41. N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laugt, and J. Massies, J. Appl. Phys. 86 3714 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top