(18.204.227.34) 您好!臺灣時間:2021/05/19 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高鳴宏
研究生(外文):Ming-Horng Gau
論文名稱:氮化鋁鎵/氮化鎵高電子遷移率電晶體結構的成長與分析及其在自旋電子學之應用
論文名稱(外文):Growth and characterizations of AlGaN/GaN HEMT structure for spintronic application
指導教授:羅奕凱
指導教授(外文):Ikai Lo
學位類別:博士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:76
中文關鍵詞:氮化鋁鎵高電子遷移率電晶體氮化鎵自旋分裂自旋電子學原子軌域線性結合分子束磊晶二維電子氣有機金屬氣相磊晶
外文關鍵詞:GaNAlGaN2DEGMOVPEMBEHEMTSdHspin-splittingspintronicsLCAO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了應用在自旋電子學的領域,這篇論文完成了自旋極化的氮化鋁鎵/氮化鎵高電子遷移率電晶體結構的設計、製造和分析。利用能帶計算裡的原子軌域線性結合法和雙能帶k.p法,本論文檢視了不同應力下纖維鋅礦結構的自旋分裂能量和最小自旋分裂面與費米波向量的關係。根據這些結果,非彈道自旋電晶體的主體材料設計也在被提出。藉由最佳化鋁含量和二維電子氣載子密度, 二維電子氣的費米面將會達到最小自旋分裂面使自旋生命週期共振.

為了實現自旋電晶體,高品質的氮化鋁鎵/氮化鎵高電子遷移率電晶體結構是必要的。利用電漿輔助分子束磊晶法,本篇論文裡研究了磊晶條件對於氮化鎵磊晶層極化和結構品質的影響。在c方向上的藍寶石基板上成長一層鋁飽和的氮化鋁成核層,鎵極化的氮化鋁鎵/氮化鎵異質結構可被成功的製造;藉由成長鎵飽和的氮化鎵磊晶層,二維電子氣的介面粗糙度和差排散射也可以減少。此外,不同類型的差排對於氮化鋁鎵/氮化鎵高電子遷移率電晶體結構的電子遷移率的影響也被檢視。在低溫的環境裡,氮化鋁鎵/氮化鎵高電子遷移率電晶體結構的電子遷移率主要是被刃差排所散射而非混合錯位。

在c方向上的藍寶石基板上,利用有機金屬氣相磊晶法成長不同鋁含量 (x = 0.191~0.397) 的自旋極化氮化鋁鎵/氮化鎵高電子遷移率電晶體結構,前面提出的自旋電晶體的材料設計也被實現。高電子遷移率 (在4K下10682 cm2/Vs)、平整的介面 (表面粗糙度 < 0.5 nm)、和高品質的氮化鎵磊晶層 ((102)面的X光繞射搖擺曲線為417 arcsec) 提供了一個良好的環境來研究自旋分裂。利用Shubnikov-de Haas量測, 本論文得到了自旋分裂能量與費米波向量的關係。在鋁含量為0.39的氮化鋁鎵/氮化鎵高電子遷移率電晶體結構中,大自旋分裂能量 (10.76 meV)與最小自旋分裂面已經被成功的製造與控制,將可應用在Datta-Das自旋電晶體與非彈道自旋電晶體的主體材料。
The design, fabrication, and characterizations of the spin-polarized AlxGa1-xN/GaN HEMT structure have been achieved for spintronic application. By band calculation within linear combination of atomic orbitals and two-band k·p methods, the theoretical spin-splitting energy and minimum-spin-splitting surface of wurtzite structure have been investigated as a function of the Fermi wavevector with various strain-relaxations. Base on these results, the design of host material of the nonballistic spin-FET has also been proposed. By optimizing the Al composition and n2DEG, the Fermi surface of two-dimensional electron gas is supposed to reach the minimum-spin-splitting surface to produce resonant spin-lifetime.

Because the high quality AlxGa1-xN/GaN HEMT structure is necessary for realizing the spin-FET, the influence of the growth conditions on the polarity and structure quality of the GaN epilayer have been studied on the sample grown by plasma-assisted molecular beam epitaxy. Ga-polar AlGaN/GaN heterostructures on c-Al2O3 has been realized by growing over the Al-rich AlN nucleation layer. And the reduction of interface roughness and threading dislocation scatterings of the electrons in two-dimensional electron gas has also been achieved by growing GaN epilayer under slightly Ga-rich condition. Furthermore, the effect of different types of threading dislocation on the electron mobility of the AlxGa1-xN/GaN HEMT structure has been investigated as well. At low temperature, the electron mobility of two-dimensional electron gas in AlGaN/GaN heterostructures is majorly scattered by the edge type dislocation rather than the screw type.

The designs of proposed host material for spin-FETs have been realized through growing high quality spin-polarized AlxGa1-xN/GaN HEMT structures with various Al composition (x= 0.191 – 0.397) grown on c-Al2O3 by metalorganic vapor phase epitaxy. The high mobility (10682 cm2/Vs at 0.4 K), flat interface (surface roughness < 0.5 nm), and high quality HEMT provide a good environment to study the spin-splitting energy. To investigate the spin-splitting energy as functions of the Fermi wavevector, the Shubnikov-de Haas measurements were performed. A large spin-splitting energy (10.76 meV) has been fabricated in Al0.390Ga0.61N/GaN HEMT structure with kf = 8.14 × 108 m-1 for the host material of the Datta-Das spin-FET. And for the first time, the minimum-spin-splitting surface has been experimentally generated in Al0.390Ga0.61N/GaN HEMT structure with kf = 8.33 × 108 m-1 for the host material of the nonballistic spin-FET.
Acknowledgementt......................................................................................................................................................................ii
Abstract................................................................................................................................................................................vi
List of papers....................................................................................................................................................................viii
Acronyms............................................................................................................................................................................xi

1 Introduction..........................................................................................................................................................................1
1.1 Background......................................................................................................................................................................1
1.2 Motivation..........................................................................................................................................................................4
1.3 Outline of the thesis........................................................................................................................................................5

2 Design of the spin-FETs....................................................................................................................................................6
2.1 LCAO method and the Hamiltonian..............................................................................................................................6
2.2 Spin-splitting energy and minimum-spin-splitting surface....................................................................................13
2.3 Design of the host material..........................................................................................................................................17
2.4 Summary.........................................................................................................................................................................18

3 Polarity and quality control of the AlGaN/GaN HEMT structure grown by PA-molecular beam epitaxy..............19
3.1 Growth procedure...........................................................................................................................................................19
3.2 Polarity control.................................................................................................................................................................21
3.3 Quality control..................................................................................................................................................................25
3.4 Influence of different types of threading dislocation on the electron mobility......................................................28
3.5 Summary..........................................................................................................................................................................33

4 Characterizations of the HEMT structures with various Al compositions..................................................................35
4.1 Metalorganic vapor phase epitaxial growth..................................................................................................................35
4.2 Characterizations of the HEMT structures with various Al compositions.................................................................39
4.3 Study of the zero-field spin-splitting by Shubnikov-de Haas effect.............................................................................42
4.4 Summary................................................................................................................................................................................53

5 Summaries, conclusions and future works.......................................................................................................................54

References..................................................................................................................................................................................55
Appendix.......................................................................................................................................................................................60
[1] S. Hiyamizu, T. Mimura, T. Fuji, and K. Nanb, ‘High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface’, Appl. Phys. Let. 37, 805 (1980).
[2] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, ‘High electron mobility transistor based on a GaN/AlxGa1−xN heterojunction’, Appl. Phys. Let. 63, 1214 (1993).
[3] For a review, D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor spintronics and quantum computation, Springer (2002).
[4] Supriyo Datta and Biswajit Das, ‘Electronic analog of the electro-optic modulator’, Appl. Phys. Let. 56, 665 (1990).
[5] Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanagi, and Takatomo Enoki, ‘Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure’, Phys. Rev. Lett. 78, 1335 (1997).
[6] J. P. Heida, B. J. van Wees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs, ‘Spin-orbit interaction in a two-dimensional electron gas in a InAs/AlSb quantum well with gate-controlled electron density’, Phys. Rev. B 57, 11911 (1998).
[7] Debdeep Jena, ‘Spin scattering by dislocations in III-V semiconductors’, Phys. Rev. B 70, 245203 (2004).
[8] B. Beschoten, E. Johnston-Halperin, D. K. Young, M. Poggio, J. E. Grimaldi, S. Keller, S. P. DenBaars, U. K. Mishra, E. L. Hu, and D. D. Awschalom, ‘Spin coherence and dephasing in GaN’, Phys. Rev. B 63, 121202(R) (2004).
[9] Srinivasan Krishnamurthy, Mark van Schilfgaarde, and Nathan Newman, ‘Spin lifetimes of electrons injected into GaAs and GaN’, Appl. Phys. Let. 83, 1761 (2003).
[10] John Schliemann, J. Carlos Egues, and Daniel Loss, ‘Nonballistic Spin-Field-Effect Transistor’, Phys. Rev. Lett. 90, 146801 (2003).
[11] X. Cartoixa`, D. Z.-Y. Ting, and Y.-C. Chang, ‘A resonant spin lifetime transistor’, Appl. Phys. Lett. 83, 1462 (2003).
[12] Bychkov Ya and Rashba Ei, ‘Oscillatory effects and the magnetic-susceptibility of carriers in inversion-layers’, J. Phys. C 17, 6039 (1984).
[13] G. Dresselhaus, ‘Spin-Orbit Coupling Effects in Zinc Blende Structures’, Phys. Rev. 100, 580 (1955).
[14] K. Tsubaki, N. Maeda, T. Saitoh, and N. Kobayashi, ‘Spin splitting in modulation-doped AlGaN/GaN two-dimensional electron gas’, Appl. Phys. Let. 80, 3126 (2002).
[15] Ikai Lo, J. K. Tsai, W. J. Yao, P. C. Ho, Li-Wei Tu, and T. C. Chang, S. Elhamri, W. C. Mitchel, K. Y. Hsieh, J. H. Huang, H. L. Huang and Wen-Chung Tsai, ‘Spin splitting in modulation-doped AlxGa1-xN/GaN heterostructures’, Phys. Rev. B 65, 161306 (2002).
[16] Ning Tang, Bo Shen, Kui Han, Fang-Chao Lu, Fu-Jun Xu, Zhi-Xin Qin, and Guo-Yi Zhang, ‘Zero-field spin splitting in AlxGa1−xN/GaN heterostructures with various Al compositions’, Appl. Phys. Let. 93, 172113 (2008).
[17] Ikai Lo, W. T. Wang, M. H. Gau, S. F. Tsay, and J. C. Chiang, ‘Wurtzite structure effects on spin splitting in GaN/AlN quantum wells’, Phys. R. B 72, 245329 (2005).
[18] Ikai Lo, W. T. Wang, M. H. Gau, J. K. Tsai, S. F. Tsay, and J. C. Chiang, ‘Gate-controlled spin splitting in GaN/AlN quantum wells’, Appl. Phys. Lett. 88, 082108 (2006).
[19] Wan-Tsang Wang, C. L. Wu, S. F. Tsay, M. H. Gau, Ikai Lo, H. F. Kao, D. J. Jang, and Jih-Chen Chiang, Meng-En Lee, Yia-Chung Chang, Chun-Nan Chen and H. C. Hsueh, ‘Dresselhaus effect in bulk wurtzite materials’, Appl. Phys. Lett. 91, 082110 (2007).
[20] Christelle Brimont, Mathieu Gallart, Olivier Crégut, Bernd Hönerlage, and Pierre Gilliot, ‘Experimental investigation of excitonic spin relaxation dynamics in GaN‘, Phys. Rev. B 77, 125201 (2008).
[21] Akiko Kobayashi, Otto F. Sankey, Stephen M. Volz, and John D. Dow, ‘Semiempirical tight-binding band structure of wurtzite semiconductors: AlN, CdS, CdSe, ZnS, and ZnO’, Phys. Rev. B 28, 935 (1983).
[22] Charles Kittel, ‘Introduction to Solid State Physics’, John Wiley & Sons (1996).
[23] D. J. Chadi and M. L. Cohen, ‘Tight-binding calculations of the valence bands of diamond and zincblende crystals’, Phys. Stat. Solidi (b) 68, 405 (1975).
[24] S. L. Chuang and C. S. Chang, ‘k–p method for strained wurtzite semiconductors’, Phys. Rev. B 54, 2491 (1996).
[25] J.-M. Wagner and F. Bechstedt, ‘Properties of strained wurtzite GaN and AlN: Ab initio studies’, Phys. Rev. B 66, 115202 (2002).
[26] Chieh-Lung Wu, W. T. Wang, M. H. Gau, Shiow-Fon Tsay, J. C. Chiang, Ikai Lo, H. F. Kao Y. C. Hsu, W. Y. Pang, Y. S. Lee, D. J. Jang, Meng-En Lee, and Chun-Nan Chen, ‘Rashba effects on the minimum-spin-splitting surface in wurtzite materials’, unpublished.
[27] Ikai Lo, M. H. Gau, J. K. Tsai, Y. L. Chen, Z. J. Chang, W. T. Wang, and J. C. Chiang, ‘Anomalous k-dependent spin splitting in wurtzite AlxGa1−xN/GaN heterostructures’, Phys. Rev. B 75, 245307 (2007).
[28] D. Jena, I. Smorchkova, A.C. Gossard, U.K. Mishra, ‘Electron Transport in III-V Nitride Two-Dimensional Electron Gases’, Phys. Stat. Sol. (b) 228, 617 (2001).
[29] Jenn-Kai Tsai, Ikai Lo, Keng-Lin Chuang, Li-Wei Tu, Ji-Hao Huang, Chia-Ho Hsieh, and Kung-Yu Hsieh, J. Appl. Phys. 95, 460 (2004).
[30] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, ‘Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire’, Appl. Phys. Lett. 71, 2635 (1997).
[31] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, and S. Porowski, ‘Polarity determination for GaN films grown on .0001. sapphire and high pressure grown GaN single crystals’, Appl. Phys. Lett. 73, 668 (1998).
[32] D. Huang, P. Visconti, K. M. Jones, M. A. Reshchikov, F. Yun, A. A. Baski, T. King, and H. Morkoc, ‘Dependence of GaN polarity on the parameters of the buffer layer grown by molecular beam epitaxy’, Appl. Phys. Lett. 78, 4145 (2001).
[33] X. Q. Shen, T. Ide, S. H. Cho, M. Shimizu, S. Hara, and H. Okumura, ‘Stability of N- and Ga-polarity GaN surfaces during the growth interruption studied by reflection high-energy electron diffraction’, Appl. Phys. Lett. 77, 4013 (2000).
[34] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, L. F. Eastman, O. Ambacher, and M. Stutzmann, ‘Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire’, J. Appl. Phys. 87, 3375 (2000).
[35] X.Q. Shen, T. Ide, S.H. Cho, M. Shimizu, S. Hara, H. Okumura, S. Sonoda, and S. Shimizu, ‘Realization of Ga-polarity GaN thin fillms in radio-frequency plasma-assisted molecular beam epitaxy’, J. Cryst. Growth 218, 155 (2000).
[36] A. R. Smith, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J. E. Northrup, ‘Determination of wurtzite GaN lattice polarity based on surface reconstruction’, Appl. Phys. Lett. 72, 2114 (1998).
[37] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Specka, ‘Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films’, Appl. Phys. Lett. 68, 643 (1996).
[38] L. Hsu and W. Walukiewicz, ‘Electron mobility in AlxGa1-xN/GaN heterostructures’, Phys. Rev. B 56, 1520 (1997).
[39] T. Aggerstam, M. Sjödin and S. Lourdudoss, ‘AlGaN/GaN high-electron-mobility transistors on sapphire with Fe-doped GaN buffer layer by MOVPE’, Phys. Stat. Sol. (c) 3, 2373 (2006).
[40] J. Antoszewski,a) M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, Y.-F. Wu, and U. K. Mishra, ‘Scattering mechanisms limiting two-dimensional electron gas mobility in Al0.25Ga0.75N/GaN modulation-doped field-effect transistors’, J. Appl. Phys. 87, 3900 (2000).
[41] D Zanato, S Gokden, N Balkan, B K Ridley, and WJ Schaff, ‘The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN’, Semicond. Sci. Technol. 19, 427 (2004).
[42] M. J. Manfra, L. N. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, J. W. P. Hsu, D. V. Lang, and R. J. Molnar, ‘High-mobility AlGaN/GaN heterostructures grown by molecular-beam epitaxy on GaN templates prepared by hydride vapor phase epitaxy’, Appl. Phys. Lett. 77, 2888 (2000).
[43] S. Keller, G. Parish, P. T. Fini, S. Heikman, C.-H. Chen, N. Zhang, S. P. DenBaars, U. K. Mishra, and Y.-F. Wu, ‘Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures’, J. Appl. Phys. 86, 5850 (1999).
[44] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, ‘Characterization of threading dislocations in GaN epitaxial layers’, Appl. Phys. Lett. 76, 3421 (2000).
[45] Naoyuki Nakada, Masayoshi Mori, Hiroyasu Ishikawa, Takashi Egawa, and Takashi Jimbo, ‘Correlation between Electrical and Surface Properties of n-GaN on Sapphire Grown by Metal-Organic Chemical Vapor Deposition’, Jpn. J. Appl. Phys. 42, 2573 (2003).
[46] B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, and J. S. Speck, ‘Dislocation mediated surface morphology of GaN’, J. Appl. Phys. 85, 6470 (1999).
[47] M. Hao, T. Egawa, and H. Ishikawa, ‘Maskless lateral epitaxial over growth of GaN films on in situ etched sapphire substrates by metalorganic chemical vapor deposition’, J. Crystal Growth 285, 466 (2005).
[48] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars, and J. S. Speck, ‘Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition’, Appl. Phys. Lett. 72, 2247 (1998).
[49] D. C. Look and J. R. Sizelove, ‘Dislocation Scattering in GaN’, Phys. Rev. Lett. 82, 1237 (1999).
[50] Ikai Lo, W. C. Mitchel, R. E. Perrin, R. L. Messham, and M. Y. Yen, ‘Two-dimensional electron gas in GaAs/Al1-xGaxAs heterostructures: Effective mass’, Phys. Rev. B 43, 11787 (1991).
[51] P. Lorenzini, Z. Bougrioua, A. Tiberj R. Tauk, M. Azize, M. Sakowicz, K. Karpierz, and W. Knap, ‘Quantum and transport lifetimes of two-dimensional electrons gas in AlGaN/GaN heterostructures’, Appl. Phys. Lett. 87, 232107 (2005).
[52] N. Tang, B. Shen,a M. J. Wang, K. Han, Z. J. Yang, K. Xu, G. Y. Zhang, T. Lin, B. Zhu, W. Z. Zhou, and J. H. Chu, ‘Beating patterns in the oscillatory magnetoresistance originated from zero-field spin splitting in AlxGa1−xN/GaN heterostructures’, Appl. Phys. Let. 88, 172112 (2006).
[53] N. Thillosen, S. Cabañas, N. Kaluza, V. A. Guzenko, H. Hardtdegen, and Th. Schäpers, ‘Weak antilocalization in gate-controlled AlxGa1–xN/GaN two-dimensional electron gases’, Phys. Rev. B 73, 241311(R) (2006).
[54] K. S. Cho, Tsai-Yu Huang, Hong-Syuan Wang, Ming-Gu Lin, Tse-Ming Chen, C.-T. Liang, Y. F. Chen, and Ikai Lo, ‘Zero-field spin splitting in modulation-doped AlxGa1–xN/GaN two-dimensional electron systems’, Appl. Phys. Let. 86, 222102 (2005).
[55] Thomas Aggerstam, ‘Gallium nitride templates and its related material for electronic and photonic devices’, Chapter 2, Doctoral thesis, KTH, Sweden (2008).
[56] T. Aggerstam, A. Pinos, S. Marcinkevičius, M. Linnarsson, and S. Lourdudoss, ‘Electron and Hole Capture Cross-Sections of Fe Acceptors in GaN:Fe Epitaxially Grown on Sapphire’, J. Electron. Matter. 36, 1621 (2007).
[57] S. H. Jhuang, ‘Magneto-transport study of Fe-doped AlxGa1-xN/GaN with different Al content’, Chapter 4, Master dissertation, NSYSU, Taiwan (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊