跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許汝蘭
研究生(外文):Ju-lan Hsu
論文名稱:藉由光調制反射光譜決定氮化銦在紅外線區域的躍遷
論文名稱(外文):Determination of infrared transitions by photoreflectance for (0001) InN film on sapphire
指導教授:王東波王東波引用關係
指導教授(外文):Dong-Po Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:63
中文關鍵詞:光調制反射光譜氮化銦激子
外文關鍵詞:PhotoreflectanceExcitonInN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化銦 (InN) 因具有低的有效質量、高電子遷移率及高飽和速度,在高頻高功率的電子元件發展是非常有具有潛力的。本文以光調製光譜 (Photoreflectance) 探討氮化銦在紅外線區段的特性。首先在變溫下,量測光調製光譜 (PR) 訊號,並界定光譜的躍遷類型,並與光致螢光 (PL) 進行比較。接著在溫度10K下,改變激發光光強度 Ppu ,量測 PR 光譜訊號,再次驗證光譜的躍遷類型。因氮化鎵 (GaN)也可觀測到類似的激子躍遷特性,最後再與氮化鎵激子的束縛能進行比較。
The excitonic transitions of a c-oriented wurtzite InN thin film, grown on sapphire substrate by plasma-assisted molecular beam epitaxy, were studied by photoreflectance (PR) measurement from 10 to 120 K. The energies of the observed features have a tendency to decrease with increasing temperature. They are assigned to excitonic transition rather than band-to-band transitions because the features can be observed only below 110 K. The justifications of such assignments are discussed in the context of binding energies of the excitons. The PR spectra of various power of pumping beam (Ppu) were also measured. The energies of the observed features become red-shifted with decreasing Ppu. This is consistent with assignment of the excitonic transition.
第一章 導論及相關理論
1.1 前言...............................................................................1
1.2 直接能隙與間接能隙半導體.......................................2
1.3 激子...............................................................................4
1.4 光致螢光原理及簡介...................................................6

第二章 調制光譜
2.1 調制光譜學簡介...........................................................9
2.2 調制光譜學的機制.....................................................11
2.3 電子躍遷理論.............................................................14
2.4 介電函數和反射率的關係.........................................18
2.4.1 反射率......................................................................18
2.4.2 吸收係數與介電數..................................................21
2.5 低電場調制.................................................................25
2.6 中電場調制( FKOs 效應 ).........................................28
2.7 Franz-Keldysh Oscillations與asymptotic form...31

第三章 實驗設計
3.1 實驗樣品.....................................................................36
3.1.1 InN簡介...................................................................36
3.1.2 實驗樣品.................................................................39
3.2 實驗裝置....................................................................40
3.2.1 光致螢光的裝置.....................................................40
3.2.2 光調制光譜的裝置.................................................42

第四章 實驗結果與分析
4.1 實驗圖形....................................................................44
4.2 實驗結果討論與分析................................................51

第五章 結論.....................................................................53

Reference.......................................................................54
1. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager Ⅲ, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and Sarah Kurtz, J. Appl. Phys. 94, 6477 (2003).
2. V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994)
3. E. Bllotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys. 85, 916 (1999)
4. T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241(1986).
5. Q. Guo and A. Yoshida, Jpn. J. Appl. Phys., Part 1 33, 2453. (1994)
6. S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S.Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765(2004).
7. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1(2002).
8. V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Status Solidi B 234, 787(2002).
9. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967(2002).
10. J. Wu, W. Walukiewicz, W. shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 94 (2003) 4457.
11. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto: Appl. Phys. Lett. 81, 1246(2002).
12. K. Xu, and A. Yoshikawa: Appl. Phys. Lett. 83, 251(2003).
13. S. M. Sze, in Semiconductor devices, physics and technology (Wiley, New York,2002)
14. D. E. Aspnes: Optical properties of Solids, edited by M. Balkanski (North-Holland, Amsterdam, 1980)
15.F Calley, F J Shanchez, J M G Tijeroz, M A Sanchez-Garcia, E Calleia and R. Beresfordx, Semicond. Sci Technol. 12, 1396(1997)
16.H. Morkoc, “ Nitride Semiconductors and Devices ”, Springer verlag, Heidelberg 1999.
17. B. O. Seraphin, R. B. Hess, and N. Bottka, J. Appl. Phys. 36, 2242(1965).
18. M. Cardona, in Modulation Spectroscopy (Academic, New York, 1969).
19. D. E. Aspnes, in Handbook on Semiconductors, edited by M.Balkanski (North-Holland, New York, 1980), Vol.2, p. 109.
20. F. H. Pollak, in Hand book on Semiconductors, edited by M. Balkanski(North-Holland, New York, 1994).
21. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
22. See, for example, R. N. Bhattacharya, H. Shen, P. Parayanthal, and F.H. Pollak, Phys. Rev. B 37, 4004 (1988).
23. B. O. Seraphin and N. Bottka, Phys. Rev, 145, 628 (1966)
24. D. E. Aspnes, Surf. Sci. 37, 418 (1973)
25. D. F. Blossey, Phys. Rev. B 2, 3976 (1970)
26. D. E. Aspnes, Phys. Rev. B 10, 4228 (1974)
27. D. E. Aspnes and A. A. Studna, Phys. Rev, B 7, 4605 (1973)
28. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors:Physics and Materials Properties(New York,1996,springer)
29. A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, J. Cryst. Growth 137, 415 (1994)
30. J. Wu, W. Walukiewicz, W. shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff: Appl. Phys. Lett. 94, 4457(2003).
31. D. F. Blossey, Phys. Rev. B3, 1382 (1971).
32. Bougrov V., Levinshtein M. E., Rumyantsev S. L., Zubrilov A.: Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe . Eds. Levinshtein M. E., Rumyantsev S. L., Shur M. S. (John Wiley & Sons, Inc., New York, 2001)
33. M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J. M. Baranowski, C. T. Foxon, T. S. Cheng: Appl. Phys. Lett. 69, 73(1996).
34. S. P. Fu and Y. F. Chen: Appl. Phys. Lett. 85, 1523(2004).
35 Y. C. Yeo, T. C. Chong, M. F. Li: J. Appl. Phys. 83, 1429(1998).
36. M. E. Levinshtein, S. L. Rumyantsev, and M. Shur: Properties of Advanced Semiconductor Materials (John Wiley, New York, 2001).
37. V. Yu. Davydov , V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov ,and T. Inushima: Appl. Phys. Lett. 75, 3297(1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊