參 考 文 獻
[1]山崎浩著,溫榮弘編譯(2007)。Power MOSFET應用技術,台北:全華科技圖書出版。
[2] 董正暉(2005)。功率電晶體低導通電組及高頻化之改良研究。逢甲大學碩士論文,未出版。[3] 東芝半導體編輯,許招墉翻譯(2006),羅正忠審閱。最新圖解半導體製程概論。普林斯頓國際出版。
[4]郭原瑞(2005)。受外界機械應力下金氧半場效電晶體之可靠度研究與電性分析。國立中山大學機械與機電工程系碩士論文。未出版。[5]郭俊廷(2007)。受外界機械應力下65nm金氧半場效電晶體於不同溫度下熱載子效應之電性分析。國立中山大學物理學系碩士論文。未出版。
[6]羅政偉(2007)。受外界機械應力下65nm金氧半場效電晶體之溫度效應與電性機制研究。國立中山大學物理學系碩士論文。未出版。[7]施敏(2002)著,黃調元(2002)譯。半導體元件物理與製造技術。國立交通大學出版社。
[8]陳吉智。不同閘極氧化層厚度之n 型通道橫向擴散金氧半場效電晶體其特性之研究。成功大學微電子所碩士論文,未出版。[9] 劉衍昌和薛惟仁(2006)。水平雙擴散電晶體之SOI結構模擬分析,LDMOS of SOI structure by Using SILVACO。逢甲大學學生報告e-Paper。 http://dspace.lib.fcu.edu.tw/bitstream/2377/3769/1/D923025995101.pdf
[10] 何志宏(2009) 橋切法於矽覆絕緣金氧半場效電晶體之模擬與矽覆絕緣功率元件之背部閘極偏壓效應特性分析。國立中央大學電 機工程研究所博士論文[11] 薛婉君(2007)。0.35um 製程之橫向金氧半場效電晶體特性分析。清華大學電子工程研究所碩士論文,未出版。[12] 劉博文(2006)。半導體元件物理。台北:高立圖書出版。
[13] 吳國銘(2007)。整合型高電壓金氧半電晶體之研製與熱載子可靠性研究。國立成功大學電機研究所博士論文,未出版。[14] 盧承宏(2007)。300V溝渠式與P型場環體橫向雙擴散金氧半場效電晶體之設計。國立清華大學產業研發碩士積體電路設計專班碩士論文,未出版。[15] Yuan-Jui Kuo, Ting-Chang Chang, Chi-Hao Dai, Shih-Ching Chen, Jin Lu, Sz-Han Ho, Chien-Hsiang Chao, Tai-Fa Young, Osbert Cheng, and Cheng-Tung Huang, “Temperature-Dependent Biaxial Compre- ssive Strain Effect on p-Mosfets” , Electro-chemical and Solid-State Letters, 12(2), H32-H34, 2009.
[16] A. Lochtefeld and D. A. Antoniadis, “Investigation the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress”, IEEE Electron Device Lett., vol.22, pp.591-593, Aug.2001.
[17] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons,”Comparative study, of phononlimited mobility of two- dimensional electrons in strained and unstrained-Si metal-oxide-semiconductor field-effect transistors”, J. Appl, Phys., vol.80, pp. 1567-1577, 1996.
[18] E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1-x structures for Ⅲ-Ⅴ integration with Si and high mobility two dimensional electron gases in Si”, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol.10, pp.1807-1819, 1992.
[19] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhance- ment in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex “, J. Appl. Phys., vol.94, pp.2590-2596, 2003.
[20] K. Rim et al., “Characteristics and device design of sub-100-nm strained-Si N- and P-MOSFETs”, in Symp. VLSI Tech. Dig., pp.98-99, 2002.
[21] K. Rim et al., “Fabrication and mobility characteristics of ultra-thin strained-Si directly on insulator(SSDOI) MOSFETs”, in IEDM Tech. Dig., pp.49-52, 2003.
[22] C. K. Maiti, L. K. Bera, S. S. Dey, D. K. Nayak, and N. B. Chakrabarti, “Hole mobility enhancement in strained-Si pMOSFETs under high vertical field”, Solid State Electron., vol.41, pp.1863-1869, 1997.
[23] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “strained silicon MOSFET technology”, in IEDM Tech. Dig., pp.23-26,2002.
[24] S. Ito et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicrometer transistor design”, in IEDM Tech. Dig., pp.247-250, 2000.
[25] A. Shimizuet al., “Local mechanical-stress control(LMC): A new technique for CMOS-performance enhancement”, in IEDM Tech. Dig., pp.433-436, 2001.
[26] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe,S. Satoh, M. Kasw, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node”, in Symp. VLSI Tech.Dig., pp.54-55, 2004.
[27] C. S. Smith, “Piezoresistance effect in germanium and silicon”, Phys. Rev., vol.94, pp.42-49, 1954.
[28] S. E. Thompson et al., “A logic nanotechnology featuring strained silicon”, IEEE Electron Device Lett., vol.25, pp.191-193, Mar.2004.
[29] G. Scott, J. Lutze, M. Robin, F. Nouri, and M. Manley, “NMOS drive current reduction cause by layout and trench isolation stress”, in IEDM tech. Dig., pp.827-830, 1999.
[30] S. Maikap et al., “Mechanically strained strained-Si NMOSFETs”, in IEEE Electron Device Lett., vol.25, pp.40-42, Jan.2004.
[31] C. Gallon et al., “Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon”, in Solid-State Electronics, pp.561-566, 2004.
[32] Wei Zhao et al., “Partially depleted SOI MOSFETs under uniaxial tensile strain”, in IEEE Transactions on Electron Device, vol.51, pp.317-323, Mar.2004.
[33] W. Shockley and G. L. Pearson, “Modulation of conductance of thin films of semiconductors by surface changes”, Phys. Rev, 74, 232, 1948.
[34] Shin-ichi et al., “Sub-band structure engineering for advanced CMOS channels”, in Solid-State Electronics, pp.284-69, 2005.
[35] Jin He(2002) et al. Linearly graded doping drift region: a novel lateral voltage-sustaining layer used for improvement of RESURF LDMOS transistor performances .IOP electronic Journals
[36] Jone F. Chen, Member IEEE, J. R. Lee, Kuo-Ming Wu, Tsung-Yi Huang, and C. M. Liu “Mechanism and Improvement of On-Resistance Degradation Induced by Avalanche Breakdown in Lateral DMOS Transistors. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 8, AUGUST 2008.
[37] Jone F. CHEN et al., “An Investigation on Hot-Carrier Reliability and Degradation Index in Lateral Diffused Metal–Oxide–Semiconductor Field -Effect Transistors.” Japanese Journal of Applied Physics.Vol. 47, No. 4, 2008, pp. 2641–2644
[38] Jone F. Chen, etal. “Mechanism and Modeling of On-Resistance Degradation in n-Type Lateral Diffused Metal–Oxide–Semiconductor Transistors” Japanese Journal of Applied Physics. 48 (2009).
[39] G. M. Dolny, G. E. Nostrand & K. E. Hill. “The Effect of Temperature on Lateral DMOS Transistors in a Power IC Technology.” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 39, NO. 4, APRIL 1992.
[40] G. Dolny, G. Nostrand & K. Hill. “Characterization and Modeling of the Temperature Dependence of Lateral DMOS transistors for High-Temperature Applications of Power ICs.” IEDM-90, IEEE 1990.