(3.230.154.160) 您好!臺灣時間:2021/05/08 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳榮祥
研究生(外文):Jung-hsiang Chen
論文名稱:受外界機械應力下功率電晶體之電性分析及可靠度研究
論文名稱(外文):The Electrical Analysis and Reliability Study of Power MOSFET Given External Mechanical Strain
指導教授:張鼎張
指導教授(外文):Ting-Chang Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:可靠度功率電晶體崩潰電壓
外文關鍵詞:POWER-MOSFETBreakdown VoltageReliability
相關次數:
  • 被引用被引用:4
  • 點閱點閱:264
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

現今的半導體製程技術已進入奈米尺度,隨著製程不斷的微縮,使單位面積的晶片能夠擁有更多的電晶體數量,進而提昇其工作頻率及性能,但是微影技術有其技術瓶頸。而且功率電晶體在應用上要求能夠兼顧高驅動電流和高耐壓性,而縮短元件的飄移區,將會降低功率電晶體的耐壓性,不符合目的。所以除了微縮方法,我們必須尋找其他能夠提升電晶體效能的方法,應變矽就是其中一種方法。在此論文裡,研究者深入探討當N-type功率電晶體的通道受到應變時,對其電性特性與可靠度之影響。

為了讓通道產生應變,我們選擇利用施予外界機械應力(Bending)來彎曲矽基板,此時通道將受到單軸張應力而產生應變。利用此方法,我們成功提高功率電晶體的汲極電流12.1%,提升載子遷移率4.1%。造成電子遷移率提升的主要因素是二重與四重簡併間能帶的明顯分裂。

另外,在可靠度分析方面,藉由 2000 秒的 D.C Stress,我們可以瞭解熱載子效應對應變矽的影響。功率元件尺寸越長(包含Lg和DL),可靠度越好。經過Bending處理之元件,可靠度略有改善,並且其影響和 Drift Length 直接相關。對於通道Lg=0.8(m的元件,給予曲率R=40mm的Bending,比起平面元件可得到更好的可靠度。
Abstract

The tendency to manufacture of semiconductor is to minimize the size of device. With the size was minimized, the number of transistor on the chip was maximized at the same time .However, when the drift region of Power-MOSFET is shorter will result in the Breakdown Voltage is lower, so this do not conform our purpose for application, and therefore we should look for some alternative method to enhance efficiency.
One of these method of efficiency promotion is adopting channel strain. We adopt bending silicon substrate to obtain strain. By using this method, we successfully enhance drain current and mobility 12.1% and 4.1% individually.
Furthermore, regarding the reliability study, we realize the hot-carrier effect influence under strain silicon. The longer the size(Lg & DL) of Power- MOSFET , the reliability is better. When device were bent under Bending R=40mm and Lg=0.8(m conditions, we can obtain the better reliability of device than flat chip.
目 錄

中文摘要 Ⅰ
英文摘要 Ⅱ
目 錄 Ⅲ
圖 次 Ⅴ
表 次 Ⅷ
符號一覽表 Ⅸ

第一章 緒論
1-1.功率電晶體的應用 1
1-2.研究動機 3
1-3.文獻回顧 4
1-4.本文結構 5

第二章 理論基礎
2-1. MOSFET構造和原理 6
2-2. 功率電晶體(Power-MOSFET) 12
2-3. 外加機械應力於功率電晶體 22

第三章 實驗儀器與實驗步驟介紹
3-1.實驗儀器 26
3-1-1. 研磨機 26
3-1-2. 量測機台 27
3-2.實驗步驟 29
3-2-1. 實驗前準備 29
3-2-2. Sample研磨 29
3-2-3. 量測設定 30
3-2-4. Sample規格及量測點 33
3-3.參數萃取 34
第四章 結果與討論
4-1.功率電晶體的基本電性 37
4-2.Breakdown Voltage與Ron 40
4-3.室溫時Bending效果的電性分析 47
4-4.高溫時Bending效果的電性分析 54
4-5.可靠度研究 58

第五章 結論與未來展望
5-1.結論 63
5-2.未來展望 64

參考文獻 65
參 考 文 獻

[1]山崎浩著,溫榮弘編譯(2007)。Power MOSFET應用技術,台北:全華科技圖書出版。
[2] 董正暉(2005)。功率電晶體低導通電組及高頻化之改良研究。逢甲大學碩士論文,未出版。
[3] 東芝半導體編輯,許招墉翻譯(2006),羅正忠審閱。最新圖解半導體製程概論。普林斯頓國際出版。
[4]郭原瑞(2005)。受外界機械應力下金氧半場效電晶體之可靠度研究與電性分析。國立中山大學機械與機電工程系碩士論文。未出版。
[5]郭俊廷(2007)。受外界機械應力下65nm金氧半場效電晶體於不同溫度下熱載子效應之電性分析。國立中山大學物理學系碩士論文。未出版。
[6]羅政偉(2007)。受外界機械應力下65nm金氧半場效電晶體之溫度效應與電性機制研究。國立中山大學物理學系碩士論文。未出版。
[7]施敏(2002)著,黃調元(2002)譯。半導體元件物理與製造技術。國立交通大學出版社。
[8]陳吉智。不同閘極氧化層厚度之n 型通道橫向擴散金氧半場效電晶體其特性之研究。成功大學微電子所碩士論文,未出版。
[9] 劉衍昌和薛惟仁(2006)。水平雙擴散電晶體之SOI結構模擬分析,LDMOS of SOI structure by Using SILVACO。逢甲大學學生報告e-Paper。 http://dspace.lib.fcu.edu.tw/bitstream/2377/3769/1/D923025995101.pdf
[10] 何志宏(2009) 橋切法於矽覆絕緣金氧半場效電晶體之模擬與矽覆絕緣功率元件之背部閘極偏壓效應特性分析。國立中央大學電 機工程研究所博士論文
[11] 薛婉君(2007)。0.35um 製程之橫向金氧半場效電晶體特性分析。清華大學電子工程研究所碩士論文,未出版。
[12] 劉博文(2006)。半導體元件物理。台北:高立圖書出版。
[13] 吳國銘(2007)。整合型高電壓金氧半電晶體之研製與熱載子可靠性研究。國立成功大學電機研究所博士論文,未出版。
[14] 盧承宏(2007)。300V溝渠式與P型場環體橫向雙擴散金氧半場效電晶體之設計。國立清華大學產業研發碩士積體電路設計專班碩士論文,未出版。

[15] Yuan-Jui Kuo, Ting-Chang Chang, Chi-Hao Dai, Shih-Ching Chen, Jin Lu, Sz-Han Ho, Chien-Hsiang Chao, Tai-Fa Young, Osbert Cheng, and Cheng-Tung Huang, “Temperature-Dependent Biaxial Compre- ssive Strain Effect on p-Mosfets” , Electro-chemical and Solid-State Letters, 12(2), H32-H34, 2009.
[16] A. Lochtefeld and D. A. Antoniadis, “Investigation the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress”, IEEE Electron Device Lett., vol.22, pp.591-593, Aug.2001.
[17] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons,”Comparative study, of phononlimited mobility of two- dimensional electrons in strained and unstrained-Si metal-oxide-semiconductor field-effect transistors”, J. Appl, Phys., vol.80, pp. 1567-1577, 1996.
[18] E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1-x structures for Ⅲ-Ⅴ integration with Si and high mobility two dimensional electron gases in Si”, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol.10, pp.1807-1819, 1992.
[19] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhance- ment in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex “, J. Appl. Phys., vol.94, pp.2590-2596, 2003.
[20] K. Rim et al., “Characteristics and device design of sub-100-nm strained-Si N- and P-MOSFETs”, in Symp. VLSI Tech. Dig., pp.98-99, 2002.
[21] K. Rim et al., “Fabrication and mobility characteristics of ultra-thin strained-Si directly on insulator(SSDOI) MOSFETs”, in IEDM Tech. Dig., pp.49-52, 2003.
[22] C. K. Maiti, L. K. Bera, S. S. Dey, D. K. Nayak, and N. B. Chakrabarti, “Hole mobility enhancement in strained-Si pMOSFETs under high vertical field”, Solid State Electron., vol.41, pp.1863-1869, 1997.
[23] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “strained silicon MOSFET technology”, in IEDM Tech. Dig., pp.23-26,2002.
[24] S. Ito et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicrometer transistor design”, in IEDM Tech. Dig., pp.247-250, 2000.
[25] A. Shimizuet al., “Local mechanical-stress control(LMC): A new technique for CMOS-performance enhancement”, in IEDM Tech. Dig., pp.433-436, 2001.
[26] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe,S. Satoh, M. Kasw, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node”, in Symp. VLSI Tech.Dig., pp.54-55, 2004.
[27] C. S. Smith, “Piezoresistance effect in germanium and silicon”, Phys. Rev., vol.94, pp.42-49, 1954.
[28] S. E. Thompson et al., “A logic nanotechnology featuring strained silicon”, IEEE Electron Device Lett., vol.25, pp.191-193, Mar.2004.
[29] G. Scott, J. Lutze, M. Robin, F. Nouri, and M. Manley, “NMOS drive current reduction cause by layout and trench isolation stress”, in IEDM tech. Dig., pp.827-830, 1999.
[30] S. Maikap et al., “Mechanically strained strained-Si NMOSFETs”, in IEEE Electron Device Lett., vol.25, pp.40-42, Jan.2004.
[31] C. Gallon et al., “Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon”, in Solid-State Electronics, pp.561-566, 2004.
[32] Wei Zhao et al., “Partially depleted SOI MOSFETs under uniaxial tensile strain”, in IEEE Transactions on Electron Device, vol.51, pp.317-323, Mar.2004.
[33] W. Shockley and G. L. Pearson, “Modulation of conductance of thin films of semiconductors by surface changes”, Phys. Rev, 74, 232, 1948.
[34] Shin-ichi et al., “Sub-band structure engineering for advanced CMOS channels”, in Solid-State Electronics, pp.284-69, 2005.
[35] Jin He(2002) et al. Linearly graded doping drift region: a novel lateral voltage-sustaining layer used for improvement of RESURF LDMOS transistor performances .IOP electronic Journals
[36] Jone F. Chen, Member IEEE, J. R. Lee, Kuo-Ming Wu, Tsung-Yi Huang, and C. M. Liu “Mechanism and Improvement of On-Resistance Degradation Induced by Avalanche Breakdown in Lateral DMOS Transistors. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 8, AUGUST 2008.
[37] Jone F. CHEN et al., “An Investigation on Hot-Carrier Reliability and Degradation Index in Lateral Diffused Metal–Oxide–Semiconductor Field -Effect Transistors.” Japanese Journal of Applied Physics.Vol. 47, No. 4, 2008, pp. 2641–2644
[38] Jone F. Chen, etal. “Mechanism and Modeling of On-Resistance Degradation in n-Type Lateral Diffused Metal–Oxide–Semiconductor Transistors” Japanese Journal of Applied Physics. 48 (2009).
[39] G. M. Dolny, G. E. Nostrand & K. E. Hill. “The Effect of Temperature on Lateral DMOS Transistors in a Power IC Technology.” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 39, NO. 4, APRIL 1992.
[40] G. Dolny, G. Nostrand & K. Hill. “Characterization and Modeling of the Temperature Dependence of Lateral DMOS transistors for High-Temperature Applications of Power ICs.” IEDM-90, IEEE 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔