跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何宜靜
研究生(外文):Yi-jing Ho
論文名稱:五種鰏之共生菌Photobacteriumleiognathi外膜蛋白的差異
論文名稱(外文):Variation of Outer Membrane Protein of SymbiontsPhotobacterium leiognathi in Five Leiognathid Species
指導教授:莫顯蕎莫顯蕎引用關係
指導教授(外文):Hin-kiu Mok
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:54
中文關鍵詞:外膜蛋白共生發光鰏科二維
外文關鍵詞:symbiosisluminous bacteriaLeiognathidaeOMP2-DE
相關次數:
  • 被引用被引用:3
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
鰏科(Leiognathidae),廣泛分布於西太平洋及印度洋,依據台灣魚類資料庫可分為三個屬: Gazza,Secutor,以及Leiognathus, 在台灣則有17種。鰏科和發光菌Photobacterium leiognathi形成互利的共生關係。鰏科靠體內共生的發光菌行發光,達到禦敵及族群溝通的功用;而發光菌則靠生活在魚體內吸取養分。鰏科孵化後,接觸到海水才被海水中的發光菌感染,才開始有發光菌共生。鰏科發展出一個特化的發光器,包圍住食道,形狀類似甜甜圈,發光菌就在發光器中繁衍。一般認為,鰏科只和專一的發光菌P. leiognathi共生,但在培養的過程中發現,不同種鰏科培養出的發光菌表現出不同的發光強度、氧氣消耗率、菌落型態等差異性。近期研究中顯示,細菌的外膜蛋白在進入及接觸寄主的過程扮演非常重要的角色;甚至發現,專一寄主種類的細菌外膜蛋白。本研究利用二維蛋白電泳分析五種鰏科體內發光菌P. leiognathi的外膜蛋白差異,藉此探討P. leiognathi為了適應不同種鰏科體內環境,而產生共演化的可能性。本研究結果顯示,P. leiognathi的外膜蛋白表現在同種內相似度高,在種間則有特殊的差異點。高度種內相似性顯示,外膜蛋白不會因為寄主個體差異而有劇烈的變化,其穩定性使得外膜蛋白可作為共演化的分析工具。從親緣關係地位相近的鰏中培養出的發光菌較可能出現特化之蛋白;且在最不易培養出發光菌的S. ruconius中缺少了關係到細菌活動力的蛋白的結果顯示,即使在培養條件、寄主的生活環境皆相同的情況下,P. leiognathi為了適應不同鰏科體內的條件,表現出差異性蛋白。
Leiognathid fish (Perciformes: Leiognathidae) contain 17 species in Taiwan in three genera: Gaza, Leiognathus, and Secutor. Leiognathid fish form mutualistic bio- luminescent symbiosis with the luminous bacteria Photobacterium leiognathi and have developed a specialized light organ to harbor bacteria and other structures to control light emission. The ecological dependence of leiognathid fish to its symbiont for light production and the specialized adaptations suggest that there co-evolution might have taken place. A single symbiont species were thought to be harbored in the light organ of leiognathid fishes. However, different oxygen rates, light production, and cell morphology have been observed in bacteria culturing during previous studies. To investigate the co-evolutionary interaction between P. leiognathi and leiognathid species, I examined the 2-DE patterns of the outer membrane protein (OMP) of symbiotic bacteria from specimens of five leiognathid species; OMPs have been proposed to be essential in symbiotic interaction. The 2-DE results of the P. leiognathi OMP pattern from five leiognathid species displayed intra-specific similarity, when inter-specific differences also exist. Intra-specific consistence revealed five proteins that are essential in the symbiotic interaction. Spot differences between various leiognathid species have shown that closely related species have significant protein spots which may have effect on speciation. In Secutor ruconius absence of the protein responsible for motility might result the difficulty on bacteria culturing. Intra-specific similarity excludes the possible of individual differentiation, and the inter-specific differences of bacterial OMP suggested that
P. leiognathi in various leiognathid species might have developed various OMPs to adapt to different host species.
致謝 i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF TABLES v
LIST OF FIGURES vi
INTRODUCTION 1-8
MATERIALS AND METHODS 9-19
RESULTS 20-22
DISCUSSION 23-27
CONCLUSION 28
REFERENCES 29-32
TABLES 33-35
FIGURES 36-46
個人履歷 47
Aeckersberg, F., C. Lupp, B. Feliciano, and E. G. Ruby. 2001. Vibrio fischeri outer membrane protein OmpU plays a role in normal symbiotic colonization. J Bacteriol 183(22):6590-7.
Akara Sasaki, K. I., Shigeru Aoki, Nobuyuki Azuma, Noboru Kashimura & Minoru Wadae. 2003. Field Evidence for Bioluminescent Signaling in the Pony Fish, Leiognathus elongatus. Environmental Biology of Fishes 66:307-311.
Dean, M., A. Rzhetsky, and R. Allikmets. 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156-66.
Dunlap, P. V. 1984. Physiological and Morphological State of the Symbiotic Bacteria from Light Organs of Ponyfish. Biological Bulletin 167(No. 2):410-425.
Dunlap, P. V. 1985. Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch Microbiol 141(1):44-50.
Dunlap, P. V., and coauthors. 2004. Genomic polymorphism in symbiotic populations of Photobacterium leiognathi. Environ Microbiol 6(2):145-58.
Dunlap, P. V., and M. J. McFall-Ngai. 1987. Initiation and control of the bioluminescent symbiosis between Photobacterium leiognathi and leiognathid fish. Ann N Y Acad Sci 503:269-83.
Dunlap, P. V., and H. M. Steinman. 1986. Strain variation in bacteriocuprein superoxide dismutase from symbiotic Photobacterium leiognathi. J Bacteriol 165(2):393-8.
Goo, S. Y., and coauthors. 2006. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun 74(10):5586-94.
Gosink, K. K., and C. C. Hase. 2000. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. J Bacteriol 182(15):4234-40.
Haneda, Y., and Tsuji, F. I. 1976. The Luminescent systems of pony fishes. J Morphol 150:539-552.
Hanlon, R. T., and J. B. Messenger. 1996. Cephalopod behaviour. Cambridge University Press, Cambridge ; New York.
Harper, R. D., and J. F. Case. 1999. Disruptive counterillumination and its anti-predatory value in the plainfish midshipman Porichthys notatus. Marine Biology 134:529-540.
Igarashi, Y., K. F. Aoki, H. Mamitsuka, K. Kuma, and M. Kanehisa. 2004. The evolutionary repertoires of the eukaryotic-type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes. Mol Biol Evol 21(11):2149-60.
Ikejima, K., N. B. Ishiguro, M. Wada, K. Kita-Tsukamoto, and M. Nishida. 2004. Molecular phylogeny and possible scenario of ponyfish (Perciformes:Leiognathidae) evolution. Mol Phylogenet Evol 31(3):904-9.
Johnsen, S. 2002. Cryptic and conspicuous coloration in the pelagic environment. Proc Biol Sci 269(1488):243-56.
Krüger, A., and coauthors. 2004. Identification of premycorrhiza-related plant genes in the association between Quercus robur and Piloderma croceum. New Phytologist 163(1):149-157.
Kubodera, T., Y. Koyama, and K. Mori. 2007. Observations of wild hunting behaviour and bioluminescence of a large deep-sea, eight-armed squid, Taningia danae. Proc Biol Sci 274(1613):1029-34.
Latz, M. I., and J. F. Case 1982. Light Organ and Eyestalk Compensation to Body Tilt in the Luminescent Midwater Shrimp, Sergestes Similis. J Exp Biol 98:83-104.
Maddocks, S. E., and P. C. Oyston. 2008. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154(Pt 12):3609-23.
McFall-Ngai, M. J. 1983. Adaptations for reflection of bioluminescent light in the gas bladder of Leiognathus equulus (Perciformes: Leiognathidae). J Exp Zool 227(1):23-33.
McFall-Ngai, M. J., and James G. Morin. 1991. Camouflage by Disruptive Illumination in Leiognathids, a Family of Shallow-Water, Bioluminescent Fishes. Journal of Experimental Biology 156:119-137.
McFall-Ngai, M. J., and P. V. Dunlap. 1984. External and internal sexual dimorphism in leiognathid fishes: morphological evidence for sex-specific bioluminescent signaling. J Morphol 182(1):71-83.
Millikan, D. S., and E. G. Ruby. 2004. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J Bacteriol 186(13):4315-25.
Molloy, M. P., and coauthors. 2000. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 267(10):2871-81.
Montgomery, M. K., and M. McFall-Ngai. 1994. Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120(7):1719-29.
Nybakken, J. W., and M. D. Bertness. 2005. Marine biology : an ecological approach, 6th edition. Pearson/Benjamin Cummings, San Francisco.
Nyholm, S. V., and M. J. McFall-Ngai. 2004. The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol 2(8):632-42.
Nyholm, S. V., E. V. Stabb, E. G. Ruby, and M. J. McFall-Ngai. 2000. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci U S A 97(18):10231-5.
Odenbreit, S. 2005. Adherence properties of Helicobacter pylori: impact on pathogenesis and adaptation to the host. Int J Med Microbiol 295(5):317-24.
Perez, S., and V. Weis. 2008. Cyclophilin and the regulation of symbiosis in Aiptasia pallida. Biol Bull 215(1):63-72.
Qi, M., L. Luo, H. Cheng, J. Zhu, and G. Yu. 2008. Characteristics of the LrhA subfamily of transcriptional regulators from Sinorhizobium meliloti. Acta Biochim Biophys Sin (Shanghai) 40(2):166-73.
Spaniol, V., N. Heiniger, R. Troller, and C. Aebi. 2008. Outer membrane protein UspA1 and lipooligosaccharide are involved in invasion of human epithelial cells by Moraxella catarrhalis. Microbes Infect 10(1):3-11.
Sperandio, V., and coauthors. 1996. Cloning and characterization of the gene encoding the OmpU outer membrane protein of Vibrio cholerae. Infect Immun 64(12):5406-9.
Sperandio, V., J. A. Giron, W. D. Silveira, and J. B. Kaper. 1995. The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect Immun 63(11):4433-8.
Sycuro, L. K., E. G. Ruby, and M. McFall-Ngai. 2006. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J Morphol 267(5):555-68.
Tam, R., and M. H. Saier, Jr. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57(2):320-46.
Tomb, J. F., and coauthors. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388(6642):539-47.
Van Way, S. M., E. R. Hosking, T. F. Braun, and M. D. Manson. 2000. Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene. J Mol Biol 297(1):7-24.
Vulic, M., R. E. Lenski, and M. Radman. 1999. Mutation, recombination, and incipient speciation of bacteria in the laboratory. Proc Natl Acad Sci U S A 96(13):7348-51.
Wang, Y., and K. S. Kim. 2002. Role of OmpA and IbeB in Escherichia coli K1 invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr Res 51(5):559-63.
Weiss, B. L., Y. Wu, J. J. Schwank, N. S. Tolwinski, and S. Aksoy. 2008. An insect symbiosis is influenced by bacterium-specific polymorphisms in outer-membrane protein A. Proc Natl Acad Sci U S A 105(39):15088-93.
Ying, T., and coauthors. 2005. Immunoproteomics of outer membrane proteins and extracellular proteins of Shigella flexneri 2a 2457T. Proteomics 5(18):4777-93.
Young, R. E. 1983. Oceanic bioluminescence: An overview of general function. Bull. Mar. Sci. 33:829-845.
Young, R. E., and F. M. Mencher. 1980. Bioluminescence in Mesopelagic Squid: Diel Color Change During Counterillumination. Science 208(4449):1286-1288
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top