跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡美玲
研究生(外文):Mei-Ling Tsai
論文名稱:養殖海鱺過氧化體增生活化受體(PPAR)基因表現與體脂肪之研究
論文名稱(外文):Expression of peroxisome proliferator-activated receptor (PPAR) genes and body fat of the cultured cobia Rachycentron canadum
指導教授:張瑞璋張瑞璋引用關係陳宏遠陳宏遠引用關係
指導教授(外文):Rey-Chang ChangHoung-Yung Chen
學位類別:博士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:216
中文關鍵詞:海鱺過氧化體增生活化受體脂肪狀態
外文關鍵詞:cobiaadiposityPPAR
相關次數:
  • 被引用被引用:5
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:118
  • 收藏至我的研究室書目清單書目收藏:0
本研究選殖海鱺 (Cobia, Rachycentron canadum) 過氧化體增生活化受體 (peroxisome proliferator-activated receptors, PPARs) 基因,並探討養殖期間 PPAR mRNA 之表現及受飼料脂肪酸組成之影響。目的為透過 PPAR 表現和魚體體脂肪蓄積狀況關聯之瞭解,建立以飼料營養組成之操作,調控養殖海鱺體脂肪含量或分佈的技術,以改善肉質品質及市場的競爭力,提升養殖海鱺經濟價值。研究分成四部份,包括 PPARs 基因選殖、養殖過程 PPARs mRNA 表現與體脂肪狀態時間序列表現、成長狀況優劣與 PPARs 表現之關聯和飼料含不同脂肪酸組成對 PPARs 表現之影響。
選殖的海鱺 PPARα、PPARβ 和 PPARγ 基因 cDNA 全長分別為 2046-bp、2707-bp 及 1943-bp,可轉譯 476、510 及 531 個胺基酸。以 PPARs 基因部份片段,進行 RT-PCR 與即時定量 PCR (qPCR) 分析發現,PPARα mRNA 主要表現在血合肉、心臟及肝臟,在頭腎及背肉表現量最低;PPARβ mRNA 表現以心臟、肝臟、腦及幽門垂最多,PPARγ mRNA 主要表現在脂肪組織、肝臟及幽門垂。
養殖海鱺在移入箱網 (9週) 前之中間育成階段,肝臟、腹肉的脂肪細胞的直徑明顯增大呈現hypertrophy;14 週平均體重 330 g,肝臟和腹肉的脂肪積蓄量明顯增加,腹肉和背肉脂肪細胞數目顯著增加,但脂肪細胞明顯變小,呈現 hyperplasia。由 52 週採樣十次綜合結果而言,脂肪的蓄積過程主要先發生在肝臟,接著腹肉,最後在背肉。肝臟 PPARα mRNA表現量與魚體脂肪蓄積、脂肪細胞大小及密度呈顯著負相關 (p < 0.05)。PPARγ mRNA 表現與身體脂肪蓄積、脂肪細胞大小及密度呈顯著正相關。這些結果顯示,PPARα 及PPARγ mRNA 之表現對海鱺肝臟、肌肉及內臟脂肪團中脂質代謝及脂肪蓄積是重要的。
比較蓄養於室外育成池18週,同批而成長呈優劣不同的兩群海鱺,和成長較差之小型魚 (體長約 36.8 公分;體重約 386 公克) 相較,成長較優的大型魚 (體長約54.1公分;體重約 1,287 公克),肝臟脂肪 (35%) 及中性脂質含量高於小型魚 (26%),其肝臟、腹肉脂肪細胞體積也有大於小型魚的趨勢。成長優劣狀況顯著影響海鱺肝臟PPARα mRNA 表現量及肝臟脂肪蓄積量。小型魚肝臟 PPARα mRNA 的表現量顯著高於大型魚。
以含15% 油脂飼料餵飼80 g 海鱺十週,探討飼料脂肪酸組成對PPARs mRNA表現的影響。肝臟PPARα mRNA之表現量與飼料C18:3n-3含量呈顯著正相關,而與C18:0含量呈顯著負相關;肝臟PPARβ mRNA表現量與飼料C16:0或C18:0含量呈顯著正相關;PPARγ則與飼料C20:1n-9、C20:5n-3、C20:6n-3含量呈顯著正相關 (p < 0.001)。
本研究結果顯示,海鱺飼料魚油可以部份由植物油取代,除長鏈 (C>20) 不飽和脂肪酸含量外,適當減少C18:3n-3 或增加C18:0含量,也可以增加海鱺體脂肪的蓄積,海鱺體脂肪蓄積之增減明顯與肝臟 PPARs mRNA 的表現具一定相關性,因此可以透過對 PPAR 表現研究,建立飼料配方策略,用來調控養殖海鱺魚體脂肪的含量。
The present study cloned full-length genes of peroxisome proliferators activated receptors (PPARs) of the cobia Rachycentron canadum and investigated their expressions in association with cobias’ body adiposity and lipid-metabolism related physiological parameters. In addition to gene cloning, several studies evaluating the roles of PPARs were carried out, including: a time-series study on cage-farmed cobias from week 5 to week 52 post-hatching, a study comparing fish groups with contrasting growth performance and a study elucidating the effects of dietary fatty acids.
Three isotypes, PPAR α, PPARβ and PPARγ, that were cloned from cobia’s cDNA contained 2046 bp, 2702 bp and 1943 bp, respectively. Their open reading frames encode 476, 510 and 531 amino acids, respectively. The identity in amino acid sequences between the PPARs are 52% (between PPARα and PPARβ), 52% (between PPARα and PPARγ), and 44% (between PPARβ and PPARγ), respectively. RT-PCR and real-time PCR (qPCR) analyses showed that expression of PPARα mRNA predominated in red muscle, heart and liver, and at a lower level in the head kidney and dorsal muscle. PPARβ transcripts were particularly abundant in the heart, liver, brain, and pyloric caeca. In contrast, PPARγ mRNA was detected primarily in the adipose tissues, liver, and pyloric caeca.
In the time-series study, the PPARs expression was related to the body adiposity and lipid-metabolism related physiological parameters of the cobias that were raised for one year to approximately 4.5 Kg in a commercial cage-culture farm. Ten samplings were conducted on weeks 5, 7, 9, 14, 18, 23, 29, 34, 41, and 52 post-hatching. The cobias were raised in an outdoor nursery to 88 g before being transferred to an offshore cage on week 9. The adipocytes in the liver and ventral muscle showed a hypertrophic (increase in cell size) increase towards the end of the nursery phase. Their cell size decreased significantly after the cage transfer and was maintained afterwards a size spectrum dominated by small cells until week 34. The cobias grew rapidly after the offshore transfer and reached 330 g on week 14. They showed a concurrent increase in fat deposition in the liver and ventral muscle and a concurrent hyperplasia increase in density of adipocytes in the ventral and dorsal muscle. Adipocyte hypertrophy was obvious on week 41 and regressed afterwards. As the fish grew, serum phospholipids concentration increased significantly from approximately 380 to 750 mg/dL. Time-series pattern for the specific activity of two NADPH-generating enzymes, malic enzyme and glucose-6- phosphate dehydrogenase, were reciprocal and compensatory. The expression of liver PPARα mRNA was negatively correlated to fat deposition and adiposity. There was a significant increase in body lipid deposition and hepatic PPARγ expression as the fish grew. Hepatic PPARγ expression could be a sufficient parameter describing its expression in whole body. These results showed that PPARγ and PPARα played a pivotal role in the control of lipid metabolic and storage functions in the liver, muscle and visceral fat depot of the cobia.
In the study comparing differential fish growth, two groups of cobias were selected based on their growth performance from a same batch of fish raised in a nursery. The large-size group that was regarded as superior grower was 54.1 cm in total length and 1,287 g in weight; while the small-size fish (inferior grower) was 36.8 cm and 386 g. Compared to large cobias, small cobias showed a similar hepatosomatic index and viscerasomatic index, but a significantly (p < 0.05) smaller mesenteric fat index (MFI).The levels of crude lipid in the liver (35% vs. 26%) and the proportions of neutral lipids in lipid were higher in large cobias than in small cobias. Concentrations of serum phospholipids, free fatty acids and total protein of large cobias were significantly higher than those of small cobias. Adipocyte density of liver and ventral muscle was increased with increasing fish size. The PPARα mRNA expression in the liver of small cobias was significantly higher (p < 0.05) than large cobias, ascribing to possible stress effect from their inferior growth. The growth superiority obviously affected PPARα mRNA expression and fat deposition in the liver. In general, the expression of liver PPARα mRNA was negatively correlated to body weight, body length, MFI, and serum NEFA, as well as lipid concentration, adiposity (adipocyte density and adipocyte size), G6PDH enzyme activity in the liver. The PPARγ mRNA expression in the liver was positively correlated to size of the adipocytes size.
The effects of dietary fatty acids on PPARs expression were evaluated in a 10-week growth trial, in which cobias with an initial weight of 80 g were fed diets containing 15% lipid. Among the lipids, 6% was fish oil and the remaining 9% were fish oil (rich in EPA and DHA), perilla oil (C18:3n-3), safflower oil (C18:2n-6), olive oil (C18:1n-9) or palm oil (C16:0). Significant difference was detected in PPARs mRNA expression among dietary treatments and among tissues. In the liver, among the dietary treatments, significantly higher expression levels of PPARα mRNA were detected in perilla oil and olive oil group, PPARβ mRNA in palm oil group and PPARγ mRNA in fish oil group. Linear regression analysis showed that liver PPARα mRNA expression was positively (p < 0.05) correlated with dietary C18:3n-3 levels and negatively with dietary C18:0 levels. Liver PPARβ mRNA expression was positively correlated to C16:0 or C18:0 levels in diets. The PPARγ expression was positively (p < 0.001) correlated to dietary levels of C20:1n-9, C20:5n-3 and C22:6n-3.
In summary, the mRNA expression pattern of PPARs was tissue or organ-specific with the expression of PPARα occurred predominantly in the liver and PPARγ in the adipose tissues. The expressions of PPARs in the liver were more related to their physiological roles than in other tissues or organs studied in the present study. The expression of PPARα in the liver was shown correlated negatively to body fat deposition; and reciprocally, expression of PPARγ was positively correlated to fat deposition. PPARs mRNA expression was also associated with major dietary fatty acids. Increased dietary C18:0 levels down-regulated PPARα and up-regulated PPARβ. Up-regulation of PPARγ was significantly related to increased levels of highly (C>20) unsaturated fatty acid in diets. Dietary C16–C18 fatty acids on the other hand were more related to expressions of PPARα and PPARβ. These results suggest that fish oil could be partially replaced by plant oils as the lipid source in the diet of the cobia. In addition to highly unsaturated fatty acids, reduction in dietary C18:3n-3 and increase in C18:0 lead to increased fat deposition, implicating a possible strategy to modulate body lipid contents of the cobia through dietary manipulation.
目錄

頁次
中文摘要……………………………………………………………… I
英文摘要……………………………………………………………… III
目錄…………………………………………………………………… VIII
表目錄………………………………………………………………… X
圖目錄………………………………………………………………… XII
一、 前言…………………………………………………………… 1
二、 文獻回顧……………………………………………………… 6
2.1 魚類體脂肪之分佈……………………………… 3
2.2 食物脂肪的運送…………………………………… 9
2.3 魚類脂質生合成…………………………………… 14
2.4 脂肪細胞的分化…………………………………… 17
2.5 脂肪細胞的分化之過程…………………………… 21
2.6 與脂肪細胞分化有關的轉錄因子………………… 23
2.7 PPARs 的生理效應…………………………………… 25
三、 綜合材料與方法……………………………………………… 41
3.1 實驗動物採集………………………………………… 41
3.2 肝臟中 total RNA 之萃取…………………………… 41
3.3 RNA 變性電泳分析…………………………………… 42
3.4 互補去氧核醣核酸(cDNA)之製備…………………… 42
3.5 Primer之設計………………………………………… 43
3.6 即時定量 PCR……………………………………… 43
3.7 一般成分分析………………………………………… 46
3.8 血清脂質含量分析…………………………………… 48
3.9 脂肪細胞直徑分佈分析…………………………… 49
3.10 脂質生合成相關酵素活性分析…………………… 50
四、 過氧化體增生活化受體 (PPARs) 基因選殖 (實驗一) …… 52
4.1 摘要…………………………………………………… 52
4.2 研究緣由……………………………………………… 53
4.3 實驗過程……………………………………………… 54
4.4 結果…………………………………………………… 64
4.5 討論…………………………………………………… 76
五、 海鱺成長各階段 PPARs mRNA 表現與體脂肪之關聯 (實驗二) …………………………………………………………… 82
5.1 摘要…………………………………………………… 82
5.2 研究緣由……………………………………………… 83
5.3 實驗過程……………………………………………… 84
5.4 結果…………………………………………………… 88
5.5 討論…………………………………………………… 107
六、 成長優劣狀況對 PPARs mRNA 表現及其體脂肪之影響 (實驗三) ………………………………………………………… 112
6.1 摘要…………………………………………………… 112
6.2 研究緣由……………………………………………… 113
6.3 實驗過程……………………………………………… 113
6.4 結果………………………………………………… 117
6.5 討論………………………………………………… 130
七、 飼料脂肪酸組成對 PPARs mRNA 表現之影響 (實驗四)…… 138
7.1 摘要…………………………………………………… 138
7.2 研究緣由……………………………………………… 139
7.3 實驗過程……………………………………………… 141
7.4 結果…………………………………………………… 152
7.5 討論…………………………………………………… 158
八、 總結論…………………………………………………………… 162
九、 參考文獻………………………………………………………… 164
附錄一 英文縮寫對照表…………………………………………… 186
附錄二 本論文研究期間發表之相關論文
丁詩同、劉秉勳、許哲銘,2003。多不飽和脂肪酸調控脂質代謝基因表達之機制。科學農業 51,160-168。
李玉蘭,2000。箱網養殖海鱺化學組成特性及其季節與貯藏變化。國立臺灣海洋大學食品科學系碩士論文,基隆。
林佩貞,2008。飼料添加植物油脂對海鱺稚魚成長、脂肪狀態、代謝酵素活性、及脂肪酸組成的影響。國立中山大學海洋生物研究所碩士論文。
張賜玲、謝介士、周瑞良、蘇茂森,1999。海鱺繁養殖技術簡介。養魚世界 9,14-26。
陳俊璋,2006。海鱺成長期間體脂肪細胞大小密度及脂肪生成相關參數之變化。國立中山大學海洋生物研究所碩士論文。
沈士傑,1993。臺灣魚類誌,南天書局,329頁。
楊順德、劉富光,2005。水試專訊 12,26-28。
漁業署,2007。台灣地區漁業年報。農業委員會漁業署,台北。
Adams, M., Reginato, M.J., Shao, D., Lazar, M.A., Chatterjee, V.K., 1997. Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. The Journal of Biological Chemistry 272, 5128-5132.
Ailhaud, G., Grimaldi, P., Négrel, R., 1992. Cellular and molecular aspects of adipose tissue development. Annual Reviews Nutrition 12, 207-33.
Aksnes, A., Hjertnes, T., Opstvedt, J., 1996. Effect of dietary protein level on growth and carcass composition in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 145, 225-233.
Albalat, A., Gómez-Requeni, P., Rojas, P., Médale, F., Kaushik, S., Vianen, G.J., Van den Thillart, G., Gutiérrez, J., Pérez-Sánchez, J., Navarro, I., 2005. Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 289, R259-R265.
Altiok, S., Xu, M., Spiegelman, B.M., 1997. PPARgamma induces cell cycle withdrawal: inhibition of E2F/DP DNA binding activity via down-regulation of PP2A. Genes and Development 11, 1987-1998.
Amthauer, R., Villanueva, J., Vera, M.I., Concha., M., Krauskopf M., 1989. Characterization of the major plasma apolipoproteins of the high density lipoprotein in the crap (Cyprinus carpio). Comparative Biochemistry and Physiology 92B, 787-793.
Anderson, D.B., Kauffman, R.G., 1973. Cellular and enzymatic changes in porcine adipose tissue during growth. Journal of Lipid Research 14, 160-168.
Andersen, O., Eijsink, V.G.H., Thomassen, M., 2000. Multiple variants of peroxisome proliferator-activated receptor (PPAR) γ are expressed in liver of Atlantic salmon (Salmo salar). Gene 255, 411-418
Ashwell, M., Priest, P., Bondoux, M., Sowter, C., McPherson, C.K., 1976. Human fat cell sizing-a quick, simple method. Journal of Lipid Research 17, 190-192.
AOAC (Association of Official Analytical Chemists), 1984. Official Methods of Analysis. 1018 pp. (Horwitz, W., editor). 13th edition. Washington, DC.
Auwerx, J., 1999. PPARgamma, the ultimate thrifty gene. Diabetologia 42, 1033-1049.
Averette-Gatlin, L., See, M.T., Hansen, J.A., Sutton, D., Odle, J., 2002. The effects of dietary fat sources, levels, and feeding intervals on pork fatty acid composition. Journal of Animal Science 80, 1606-1615.
Ayorinde, F.O., Jrcliffon, J., Afolabl, O.A., Shepard, R.I., 1988. Rapid transesterification and mass spectrometric approach to seed oil analysis. Journal of the American Oil Chemists'' Society 65, 942-948.
Azain, M.J., 2004. Role of fatty acids in adipocyte growth and development. Journal of Animal Science 82, 916-924.
Babin, P.J., Vernier , J.M., 1989. Plasma lipoproteins in fish. Journal of Lipid Research 30, 467-489.
Batista-Pinto, C., Rodrigues, P., Rocha, E., Lobo-da-Cunha, A., 2005. Identification and organ expression of peroxisome proliferator activated receptors in brown trout (Salmo trutta f. fario). Biochimica et Biophysica Acta 1731, 88-94.
Bautista, J.M., Garrido-Pertuerra, A., Soler, G., 1988. Glucose-6-phosphate dehydrogenase from Dicentrarchus labrax liver: kinetic mechanism and kinetics of NADPH inhibition. Biochimica et Biophysica Acta 967, 354-363
Bazin, R., Ferré, P., 2000. Methods in molecular biology. In Ailhaud, G. (eds) Adipose Tissue Protocols. Humana Press Inc., Totowa, New Jersey, pp. 121-127.
Beck, F., Plummer, S., Senior, P.V., Byrne, S., Green, S., Brammar, W.J., 1992. The ontogeny of peroxisome-proliferator-activated receptor gene expression in the mouse and rat. Proceedings of the Royal Society of London. Series B. Biological Sciences 247, 83-87.
Berger, J., Moller, D.E., 2002. The mechanisms of action of PPARs. Annual Review of Medicine 53, 409-435.
Bernlohr, D.A., Bolanowski, M.A., Kelly, T.J., Lane, M.D., 1985. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. Journal of Biological Chemistry 260, 5563-5567.
Borba, M.R., Fracalossi, D.M., Pezzato, L.E., Menoyo, D., Bautista, J.M., 2003. Growth, lipogensis and body composition of piracanjuba (Brycon orbignyanus) fingerlings fed different dietary protein and lipid concentrations. Aquatic Living Resources 16, 362-369.
Boujard, T., Gélineau, A., Covès, D., Corraze, G., Dutto, G., Gasset, E., Kaushik, S., 2004. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 231, 529-545.
Boukouvala, E., Antonopoulou, E., Favre-Krey, L., Diez, A., Bautista, J.M., Leaver, M.J., Tocher, D.R., Krey, G., 2004. Molecular Characterization of three peroxisome proliferator-activated receptors from the sea bass (Dicentrarchus labrax). Lipids 39, 1085-1092.
Braissant, O., Foufelle, F., Scotto, C., Dauca, M., Wahli, W., 1996. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α,-β, and -γ in the adult rat. Endocrinology 137, 354-366.
Brauge, C., Corraze, G., Médale, F., 1995. Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout., Oncorhynchus mykiss, reared in freshwater or in seawater. Comparative Biochemistry and Physiology 111A, 117-124.
Briggs, J.C., 1960. Fishes of worldwide (circumtropical) distribution. Copeia 3, 171-180.
Chang, D., 2003. Taiwan cobia: another choice whitefish to discerning consumers. Infofish International 5, 24-27.
Chapkin, R.S., 2000. Reappraisal of the essential fatty acids. In Chow, C.K. (eds). Fatty Acids in Foods and Their Health Implications. 2nd edition. Marcel Dekker, Inc., New York. pp. 557–568
Chawla, A., Boisvert, W.A., Lee, C.H., Laffitte, B.A., Barak, Y., Joseph, S.B., Liao, D., Nagy, L., Edwards, P.A., Curtiss, L.K., Evans, R.M., Tontonoz, P., 2001. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Molecular Cell 7, 161-71.
Chawla, A., Schwarz, E.J., Dimaculangan, D.D., Lazar, M.A., 1994. Peroxisome proliferator-activated receptor (PPAR) γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798-800.
Chen, H.Y., Liao, I.C., 2007. Nutritional research and feed development in cobia: status and prospects. In Liao I.C., Leanõ E.M. (eds) Cobia Aquaculture: Research, Development and Commercial Production. Cobia. Asian Fisheries Society pp. 89-96.
Chiang, M.T., Kimura, S., Fujimoto, H., 1990. Effect of dietary eicosapentaenoic and on plasma lipids and platelet function in strokeprone spontaneously hypertensive rat. International Journal for Vitamin and Nutrition Research 60, 142-149.
Chiu, C.C., Yeh, S.J., Liau, B.Y., 2005. Assessment of Cerebral autoregulation dynamics in diabetics using time-domain cross-correlation analysis. Journal of Medical and Biological Engineering 25, 53-59.
Chou, R.L., Her, B.Y., Su, M.S., Hwang, G., Wu, Y.H., Chen, H.Y., 2004. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229, 325-333.
Chou, R.L., Su, M.S., Chen, H.Y., 2001. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture 193, 81-89.
Company, R., Calduch-Giner, J.A., Kaushik, S., Pérez-Sánchez, J., 1999. Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture 171, 279-292.
Corton, J.C., Anderson, S.P., Stauber, A., 2000. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annual Review of Pharmacology and Toxicology 40, 491-518.
Costet, P., Legendre, C., Moré, J., Edgar, A., Galtier, P., Pineau, T., 1998. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. The Journal of Biological Chemistry 273, 29577-29585.
Crockett, E.L., Sidell, B.D., 1993. Peroxisomal β-oxidation is a significant pathway for catabolism of fatty acids in a marine teleost. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 264, R1004-R1009.
Dani, C., Amri, E.Z., Bertrand, B., Enerback, S., Bjursell, G., Grimaldi, P., Ailhaud, G., 1990. Expression and regulation of pOb24 and lipoprotein lipase genes during adipose conversion. Journal of Cellular Biochemistry 43, 103-110.
DeMartinis, F. D., Francendese, A., 1982. Very small fat cell populations: mammalian occurrence and effect of age. Journal of Lipid Research 23, 1107-1120.
De Smet, W.H.O., 1978. Study of the serum albumin and globulin of vertebrates. Acta Zoologica Patbol Antverpiensia 70, 57-83.
Desvergne, B., Wahli, W., 1999. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews 20, 649-688.
Devchand, P.R., Keller, H., Peters, J.M., Vazquez, M., Gonzalez, F.J., Wahli, W., 1996. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384, 39-43.
Devers, M., Soulas, G., Martin-Laurent, F., 2004. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. Journal of Microbiological Methods 56, 3-15.
Dias, J., Alvarez, M.J., Arzel, J., Corraze, G., Diez, A., Bautista, J.M., Kaushik, S.J., 2005. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 142, 19-31.
Dias, J., Alvarez, M. J., Diez, A., Arzel, J., Corraze, G., Bautista, J.M., Kaushik, S.J., 1998. Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161, 169-186.
Ding, S.T., Shinckel, A.P., Weber, T.E., Mersmann, H.J., 2001. Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations. Journal of Animal Science 78, 2127-2134.
Ding, S.T., Lapillonne, A., Heird, W.C., Mersmann, H.J., 2003. Dietary fat has minimal effects on fatty acid metabolism transcript concentrations in pigs. Journal of Animal Science 81, 423-431.
Diot, C., Douaire, M., 1999. Characterization of a cDNA sequence encoding the peroxisome proliferator activated receptor α in the chicken. Poultry Science 78, 1198-1202.
Ditty, J.C., Shaw, R.F., 1992. Larval development, distribution, and ecology of cobia Rachycentron canadum (Family: Rachycentridae) in the northern Gulf of Mexico. Fish Bulletin 90, 668-677.
Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., Wahli, W., 1992. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879-887.
Dunajski, E., 1979. Texture of fish muscle. Journal of Texture Studies 10, 301-318.
Duplus, E., Glorian, M., Forest, C., 2000, Fatty acid regulation of gene transcription. The Journal of Biological Chemistry 275, 30749-30752.
Einen, O., Skrede, G.G., 1998. Quality characteristics in raw and smoked fillets of Atlantic salmon, Salmo salar, fed high energy diets. Aquaculture Nutrition 4, 99-108.
Ellinghaus, P., Wolfrum, C., Assmann, G., Spener, F., Seedorf, U., 1999. Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/ sterol carrier protein x-deficient mice. The Journal of Biological Chemistry 274, 2766-2772.
Evans, R.M., 1988. The steroid and thyroid hormone receptor superfamily. Science 240, 889-895.
Fajas, L., Fruchart, J.C., Auwerx, J., 1998. Transcription control of adipogenesis. Current Opinion in Cell Biology 10, 165-173.
Fauconneau, B., Alami-Durante,H., Laroche, M., Marcel, J., Vallot, D., 1995. Growth and meat quality relations in carp. Aquaculture 129, 265-297.
Fauconneau, B., Ander, S., Chmaitilly, J., Le Bail, P.Y.L., Krieg, F., Kaushik, S.J., 1997. Control of skeletal muscle fibres and adipose cells size in the flesh of rainbow trout. Journal of Fish Biology 50, 296-314.
Folch, J., Lees, M., Sloane Stanley, G.H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 223, 497-509.
Forman, B.M., Chen, J., Evans, R.M., 1997. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proceedings of the National Academy of Sciences of the United States of America 94, 4312-4317.
Forman, B.M., Tontonoz, P., Chien, J., Brun, R.P., Spiegelman, B.M., Evans, R.M., 1995. 15-Deoxy-delta 12,14-prostagland J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803-812.
Frűhbeck, G., Gómez-ambrosi, J., Muruzábal, J., Burrell, M.A., 2001, The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology: Endocrinology and Metabolism 280, E827-E847.
Fuller, P.J., Lim-Tio, S.S., Brennan, F.E., 2000. Specificity in mineralocorticoid versus glucocorticoid action. Kidney International 57, 1256-1264.
Gearing, K.L., Crickmore, A., Gustafsson, J.Å., 1994. Structure of the mouse peroxisome proliferator activated receptor α gene. Biochemical and Biophysical Research Communications 199, 255-263.
Gélineau, A., Bolliet, V., Corraze, G., Boujar, T., 2002. The combined effects of feeding time and dietary fat levels on feed intake, growth and body composition in rainbow trout. Aquatic Living Resources 15, 225-230.
Gélineau, A., Corraze, G., Boujard, T., Larroquet, L., Kaushik, S., 2001. Relation between dietary lipid level and voluntary feed intake, growth, nutrient gain, lipid deposition and hepatic lipogenesis in rainbow trout. Reproduction Nutrition and Development 41, 487-503.
Gelman, L., Zhou, G., Fajas, L., Raspé, E., Fruchart, J.C., Auwerx, J., 1999. p300 Interacts with the N- and C-terminal part of PPARγ2 in a ligand-independent and -dependent manner, respectively. The Journal of Biological Chemistry 274, 7681-7688.
Gjedrem, T., 1997. Flesh quality improvement in fish through breeding. Aquaculture International 5, 197-206.
Gondret, F., Mourot, J., Bonneau, M., 1998. Comparison of intramuscular adipose tissue cellularity in muscles differing in their lipid content and fibre type composition during rabbit growth. Livestock Production Science 54, 1-10.
Green, H., Kehinde, O., 1975. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5, 19-27.
Gregoire, F.M., Smas, C.M., Sul, H.S., 1998. Understanding adipocyte differentiation. Physiological Reviews 78, 783-809.
Grimaldi, P.A., 2001. The roles of PPARs in adipocyte differentiation. Progress in Lipid Research 40, 269-281.
Guglielmo, C.G., Wailliams, T.D., Zwingelstein, G., Brichon, G., Weber, J.M., 2002. Plasma and muscle phospholipids are involved in the metabolic response to long-distance migration in a shorebird. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 173, 409-417.
Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95-98.
Hamilton, J.G., Comai, K., 1984. Separation of neutral lipids and free fatty acids by high-performance liquid chromatography using low wavelength ultraviolet detection. Journal of Lipid Research 25, 1142-1148.
Hegardt, F.G., 1998. Transcriptional regulation of mitochondrial HMG-CoA synthase in the control of ketogenesis. Biochimie 80, 803-6.
Henderson, R.J., Sargent, J.R., 1981. Lipid biosynthesis in rainbow trout, Salmo gairdneri, fed diets differing in lipid content. Comparative Biochemistry and Physiology 69C, 31-37.
Hertz, R., Bishara-Shieban, J., Bar-Tana, J., 1996. Hypolipidemic effect of peroxisome proliferators. Transcriptional suppression of apolipoprotein C-III. Annals of the New York Academy of Sciences 804, 731-733.
Hertzel, A.V., Bernlohr, D.A., 1998. Regulation of adipocyte gene expression by polyunsaturated fatty acids. Molecular and Cellular Biochemistry 188, 33-39.
Hihi, A.K., Michalik, L., Wahli, W., 2002. PPARs: transcriptional effectors of fatty acids and their derivatives. Cellular and Molecular Life Sciences. Cellular and Molecular Life Sciences 59, 790-798.
Hirsch, J., Ham, P.W., 1969. Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. Journal of Lipid Research 10, 77-82.
Hood, R.L. 1982. Relationships among growth, adipose cell size and lipid metabolism in ruminant adipose tissue. Federation Proceedings 41, 2555-2561.
Houseknecht, K.L., Cole, B.M., Steele, P.J., 2002. Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: A review. Domestic Animal Endocrinology 22, 1-23.
Hu, E., Kim, J.B., Sarraf, P., Spiegelman, B.M., 1996. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274, 2100-2103.+
Huang, J.T., Welch, J.S., Ricote, M., 1999. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378-382.
Hung, S.S.O., Storebakken, T., 1994. Carbohydrate utilization by rainbow trout is affected by feeding strategy. The Journal of Nutrition 124, 223-230.
Ibabe, A., Bilbao, E., Cajaraville, M.P., 2005. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochemistry and Cell Biology 123, 75-87.
Ibrahimi, A., Bonino, F., Bardon, S., Aihaud, G., Dani, C., 1992. Essential role of collagens for terminal differentiation of preadipocytes. Biochemical and Biophysical Research Communications 187, 1314-1322.
Ibrahimi, A., Teboul, L., Gaillard, D., Amri, E.Z., Ailhaud, G., Young, P., Cawthorne, M.A., Grimaldi, P.A., 1994. Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Molecular Pharmacology 46, 1070-1076.
Iijima, N., Aihara, M., Kayama, M., Okazaki, M., Hara, I., 1989. Comparison of carp plasma lipoproteins under starved and fed conditions. Nippon Suissan Gakkaishi 55, 2001-2007
Iniesta, M.G., Cano, M.J., Garrido-Pertierra, A., 1985. Properties and function of malate enzyme from Dicentrarchus labrax L. liver. Comparative Biochemistry and Physiology 80B, 35-39.
Iritani, N., Ikeda, Y., Fukuda, H., Katsurada, A., 1984. Comparative study of lipogenic enzymes in several vertebrates. Lipids 19, 828-835.
Issemann, I., Green, S., 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650.
Issemann, I., Prince, R., Tugwood, J., Green, S., 1992. A role for fatty acids and liver fatty acid binding protein in peroxisome proliferation? Biochemical Society Transactions 20, 824-827.
Jangaard, P.M., Brockerhoff, H., Burgher, R.D., Hoyle, R.J., 1967. Seasonal changes in general condition and lipid content of cod from inshore water. Journal of the Fisheries Research Board of Canada 24, 602-607.
Jobling, M., 2001. Book review. Fish and Fisheries 2, 387-388.
Jobling, M., 2004. ''Finishing'' feeds for carnivorous fish and the fatty acid dilution model. Aquaculture Research 35, 706-709
Jobling, M., Johansen, S.J.S., 2003. Fat distribution in Atlantic salmon Salmo salar L. in relation to body size and feeding regime. Aquaculture Research 34, 311-316.
Jobling, M., Koskela, J., Savolainen, R., 1998. Influence of dietary fat level and increased adiposity on growth and fat deposition in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research 29, 601-607.
Johansson, L., Kiessling, A., Kiessling, K.H., Berglund, L., 2000. Effects of altered ration levels on sensory characteristics, lipid content and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Food Quality and Preference 11, 247-254.
Johansen, S.J.S., Ekli, M., Jobling, M., 2002. Is there lipostatic regulation of feed intake in Atlantic salmon Salmo salar L.? Aquaculture Research 33, 515-524.
Johnston, I.A. 1999. Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177, 99-115.
Johnston, I.A., Li, X., Vieira, V.L.A., Nickell, D., Dingwall, A., Alderson, R., Campbell, P., Bickerdike, R., 2006. Muscle and flesh quality traits in wild and farmed Atlantic salmon. Aquaculture 256, 323-336.
Kanazawa A., 1997. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155, 129-134.
Kaiser, J.B., Holt, G.J., 2005. Species profile cobia. Southern Regional Aquaculture Center Publication 7202.
Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., Wahli, W., 1993. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proceedings of the National Academy of Sciences of the United States of America 90, 2160-2164.
Kersten, S., Desvergne, B., Wahli, W., 2000. Roles of PPARs in health and disease. Nature 405, 421-424.
Khan, S.A, Vanden Heuvel J.P., 2003. Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). The Journal of Nutritional Biochemistry 14, 554-567.
Kiessling, A., Asgard, T., Storebakken, T., Johansson, L., Kiessling, K.H., 1991. Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age. III: chemical composition. Aquaculture 93, 373-387.
Kiessling, A., Pickova, J., Johansson, L., Åsgård, T., Storebakken, T., Kiessling, K.H., 2001. Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus mykiss) in relation to ration and age. Food Chemistry 73, 271-284.
Kim, J.B., Spiegelman, B.M., 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes and Development 10, 1096-1107.
Kliewer, S.A., Lenhard, J.M., Willson, T.M., Patel, I., Morris, D.C., Lehmann, J.M., 1995. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83, 813-819.
Kliewer, S.A., Sundseth, S.S., Jones, S.A., Brown, P.J., Wisely, G.B., Koble, C.S., Devchand, P., Wahli, W., Willson, T.M., Lenhard, J.M., Lehmann, J.M., 1997. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proceedings of the National Academy of Sciences of the United States of America 94, 4318-4332.
Koh, H.J., Lee, S.M., Son, B.G., Lee, S.H., Ryoo, Z.Y., Chang, K.T., Park, J.W., Park, D.C., Song, B.J., Veech, R.L., Song, H., Huh, T.L., 2004. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. The Journal of Biological Chemistry 279, 39968-39974.
Kondo, H., Misaki, R., Gelman, L., Watabe, S., 2007. Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. General and Comparative Endocrinology 154, 120-127.
Krey, G., Braissant, O., Horset, F.L’., Kalkhoven, E., Perroud, M., Parker, M.G., Wahli, W., 1997. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Molecular Endocrinolog 11, 779-791.
Latruffe, N., Cherkaoui Malki, M., Nicolas-Frances, V., Clemencet, M.C., Jannin, B., Berlot, J.P., 2000. Regulation of the peroxisomal beta-oxidation-dependent pathway by peroxisome proliferator-activated receptor alpha and kinases. Biochemical Pharmacology 60, 1027-32.
Lazo, A., Gandemer, G., Viau, M., Rampon, V., Gruand, J., Le Jossec, P., Chevillon, P., 1994. Changes in lipid composition of Longissimus dorsi during post-weaning development in three genotypes of pigs. Journées de la Recherche Porcine en France 26, 175-182.
Leaver, M.J., Boukouvala, E., Antonopoulou, E., Diez, A., Favre-Krey, L., Ezaz, M.T., Bautista, J.M., Tocher, D.R., Krey, G., 2005. Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 146, 3150-3162.
Lee, S.Y., Bollinger, J., Bezdicek, D., Ogram, A., 1996. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Applied and Environmental Microbiology 62, 3787-3793.
Lemberger, T., Saladin, R., Vazquez, M., Assimacopoulos, F., Staels, B., Desvergne, B., Wahli, W., Auwerx, J., 1996. Expression of the peroxisome proliferator-activated receptor α gene is stimulated by stress and follows a diurnal rhythm. The Journal of Biological Chemistry 271, 1764-1769.
Li, W.D., Lee, J.H., Price, R.A., 2000. The peroxisome proliferator-activated receptor gamma 2 Pro12Ala mutation is associated with early onset extreme obesity and reduced fasting glucose. Molecular Genetics and Metabolism 70, 159-61.
Liao, I.C., Huang, T.S., Tsai, W.S., Hsueh, C.M., Chang, S.L., Leaño, E.M., 2004. Cobia culture in Taiwan: current status and problems. Aquaculture 237, 155-165.
Likimani, T.A., Wilson, R.P. 1982. Effects of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue. The Journal of Nutrition 112, 112-117.
Lin, H., Romsos, D.R., Tack, P.I., Leveille, G.A., 1977a. Influence of dietary lipid on lipogenic enzyme activities in coho salmon, Oncorhynchus kisutch (Walbaum). The Journal of Nutrition 107, 846-854.
Lin, H., Romsos, D.R., Tack, P.I., Leveille, G.A. 1977b. Effects of fasting and feeding various diets on hepatic lipogenic enzyme activities in coho salmon (Oncorhynchus kisutch (Walbaum)). The Journal of Nutrition 107, 1477-1483.
Lin, Q., Ruuska, S.E., Shaw, N.S., Dong, D., Noy, N., 1999. Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry 38, 185-90.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT Method. Methods 25, 402-408.
Loftus, T.M., Lane, M.D., 1997. Modulating the transcriptional control of adipogenesis. Current Opinion in Genetics and Development 7, 603-608.
Luquet, S., Lopez-Soriano, J., Holst, D., Fredenrich, A., Melki, J., Rassoulzadegan, M., Grimaldi, P.A., 2003. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. The Faseb Journal: Official Publication Of The Federation Of American Societies For Experimental Biology 17, 2299-2301.
MacDougald, O.A., Lane, M.D., 1995. Transcriptional regulation of gene expression during adipocyte differentiation. Annual Review of Biochemistry 64, 345-73.
Maglich, J.M., Justin, A.C., Millard, H.L., Timothy, M.W., John, T.M., Lakshman, R., 2003. The first completed genome sequence from a teleost fish (Fugu rubripes) adds significant diversity to the nuclear receptor superfamily. Nucleic Acids Research 31, 4051-4058.
Mandard, S., Muller, M., Kersten, S., 2004. Peroxisome proliferator-activated receptor alpha target genes. Cellular and Molecular Life Sciences 61, 393-416.
Maroni, B.J., Haesemeyer, R., Wilson, L.K., DiGirolamo, M., 1990. Electronic determination of size and number in isolated unfixed adipocyte populations. Journal of Lipid Research 31, 1703-1709.
Matsusue, K., Peters, J.M., Gonzalez, F.J., 2004. PPARβ/δ potentiates PPARγ-stimulated adipocyte differentiation. The Faseb Journal: Official Publication Of The Federation Of American Societies For Experimental Biology 18, 1477-1479.
Mayes, P.A., Botham, K.M., 2003a. Lipid and transport and storage. In Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W., (eds.) Happer’s Illustrated Biochemistry. McGraw-Hill 26th pp. 226-263.
Mayes, P.A., Botham, K.M., 2003b. Oxidation of fatty acids: ketogenesis. In Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W., (eds.) Happer’s Illustrated Biochemistry. McGraw-Hill 26th pp. 180-189.
Meignen, J.M., Desnuelle, C., Boyer, J., 1990. A simple device for the optimized isolation of fat cells. Lipids 25, 412-414.
Menoyo, D., López-Bote, C.J., Obach, A., Bautista, J.M., 2005. Journal of Animal Science 83, 2853-2862.
Michalik, L., Zoete, V., Krey, G., Grosdidier, A., Gelman, L., Chodanowski, P., Feige, J.N., Desvergne, B., Wahli, W., Michielin, O., 2007. Combined simulation and mutagenesis analyses reveal the involvement of key residues for peroxisome proliferator-activated receptor α helix 12 dynamic behavior. The Journal of Biological Chemistry 282, 9666-9677.
Mikula, M., Dzwonek, A., Jagusztyn-Krynicka, K., Ostrowski, J., 2003. Quantitative detection for low levels of Helicobacter pylori infection in experimentally infected mice by real-time PCR. Journal of Microbiological Methods 55, 351-359.
Morais, S., Bell, J.G., Robertson, D.A., Roy, W.J., Morris, P.C. 2001. Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L.): effects on growth, feed utilisation, muscle composition and liver histology. Aquaculture 203, 101-119.
Motojima, K., Passilly, P., Peters, J.M., Gonzalez, F.J., Latruffe, N., 1998. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. The Journal of Biological Chemistry 273, 16710-16714.
Moya-Camarena, S.Y., Vanden Heuvel, J.P., Blanchard, S.G., Leesnitzer, L.A., Belury, M.A., 1999. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. Journal of Lipid Research 40, 1426-33.
Muoio, D.M., MacLean, P.S., Lang, D.B., Li, S., Houmard, J.A., Way, J.M., Winegar, D.A., Corton, J.C., Dohm, G.L., Kraus, W.E. 2002. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPAR δ. The Journal of Biological Chemistry 277, 26089-26097.
Nag, A.C., 1972. Ultrastructure and adenosine triphosphatase activity of red and white muscle fibers of the caudal region of a fish, Salmo gairdneri. The Journal of Cell Biology 55, 42-57.
Nagasawa, M., Ide, T., Suzuki, M., Tsunoda, M., Akasaka, Y., Okazaki, T., Mochizuki, T., Murakami, K., 2004. Pharmacological characterization of a human-specific peroxisome proliferater-activated receptor α (PPARα) agonist in dogs. Biochemical Pharmacology. 67, 2057-2069.
Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H., Evans, R.M., 1998. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93, 229-40.
Nickell, D.C., Bromage, N.R., 1998. The effect of dietary lipid level on variation of flesh pigmentation in rainbow trout (Oncorhynchus mykiss). Aquaculture 161 237–251
Nolte, R.T., Wisely, G.B., Westin, S., Cobb, J.E., Lambert, M.H., Kurokawa, R., Rosenfeld, M.G., Willson, T.M., Glass, C.K., Milburn, M.V., 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137-143.
Overland, M., Taugboel, O., Haug, A., Sundstoel, E., 1996. Effect of fish-oil on growth performance, carcass characteristics, sensory parameters, and fatty acid composition in pigs. Acta Agriculturae Scandinavica 46, 11-17.
Oku, H., Ogata, H.Y., 2000. Body lipid deposition in juveniles of red sea bream Pagrus major, yellowtail Seriola Quinqueradiata, and Japanese flounder Paralichthys olivaceus. Fisheries Science 66,25-31.
Page, R.D., 1996. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences: CABIOS 12, 357-358.
Pairault, J., Green, H., 1979. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proceedings of the National Academy of Sciences of the United States of America 76, 5138-5142.
Pégorier, J.P., May, C.L., Girard, J., 2004, Control of gene expression by fatty acids. American Society for Nutritional Sciences 2444S-2449S.
Peters, J.M., Cattley, R.C., Gonzalez, F.J., 1997. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 18, 2029-33.
Peters, J.M., Lee, S.S., Li, W., Ward, J.M., Gavrilova, O., Everett, C., Reitman, M.L., Hudson, L.D., Gonzalez, F.J., 2000. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Molecular and Cellular Biology 20, 5119-5128.
Poissonnet, C.M., Lavelle, M., Burdi, A.R., 1988. Growth and development of adipose tissue. The Journal of Pediatrics 113, 1-9.
Purroy, A., Mendizabal, J.A., Soret, B., Arana, A., Mendizabal, F.J., 1997. Changes in cell number and size and in lipogenic enzyme activity in adipose tissues during growth and fattening of Lacha (Manech) lambs. Annales de Zootechnie 46, 309-319.
Raff, M.C. 1996. Size control: the regulation of cell numbers in animal development. Cell 86, 173-175.
Rasmussen, R.S., Ostenfeld, T.H., 2000. Effect of growth rate on quality traits and feed utilization of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Aqualture 184, 327-337.
Rasmussen, R.S., 2001. Quality of farmed salmonids with emphasis on proximate composition, yield and sensory characteristics. Aquaculture Research 32, 767-786.
Regost, C., Arzel, J., Cardinal, M., Robin, J., Laroche, M., Kaushik, S.J., 2001. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquaculture 193, 291-309.
Regost, C., Arzel, J., Robin, J., Rosenlund, G., Kaushik, S.J., 2003. Total replacement of fish oil by soybean or linseed oil with a reture to fish oil in turbot (Psetta maxima) I. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture 217, 465-482.
Reyne, Y., Teyssier, J., Nouguès, J., Tébibel, S., 1985. Longitudinal study of adipose cell size in the dorsoscapular and perirenal depots of the growing rabbit. Journal of Lipid Research 26, 1036-1046.
Robb, D.H.F., Kestin, S.C., Warriss, P.D., Nute, G.R., 2002. Muscle lipid content determines the eating quality of smoked and cooked Atlantic salmon (Salmo salar). Aquaculture 205, 345-358.
Robins, C.R., Ray, G.C., 1986. A Field Guide to Atlantic Coast Fishes of North America. Houghton Mifflin Co., Boston, U.S.A. pp. 354.
Robinson-Rechavi, M., Marchand, O., Escriva, H., Bardet, P.L., Zelus, D., Hughes, S., Laudet, V., 2001. Euteleost fish genomes are characterized by expansion of gene families. Genome Research 11, 781-788.
Rodríguez, J.C., Gil-Gómez, G., Hegardt, F.G., Haro, D., 1994. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. The Journal of Biological Chemistry 269, 18767-72.
Rosen, E.D., Spiegelman, B.M., 2001. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. The Journal of Biological Chemistry 276, 37731-37734.
Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.
Sakatomo, S., Yone, Y., 1978. Requirement of red seabream for dietary trace elements. Bulletin of the Japanese Society of Scientific Fisheries 44, 1341-1344.
Salans, L.B., Cushman, S.W., Weismann, R.E., 1973. Studies of human adipose tissue: adipose cell size and number in nonobese and obese patients. The Journal of Clinical Investigation 23, 929-941.
Salans, L.B., Horton, E.S., Sim, E.A.H., 1971. Experimental obesity in man:cellular character of the adipose tissue. The Journal of Clinical Investigation 50, 1005-1011.
Santulli, A., Curatolo, A. Modica, A., D’Amelio, L., D’Amelio, V., 1989. Serum lipoproteins of sea bass (Dicentrarchus labrax L.). Purification and partial characterization by density gradient ultracentrifugation and agarose column chromatography. Comparative Biochemistry and Physiology 94B, 613-620.
Santulli, A., Messina, C.M., D’Amelio, V., 1997. Variations of lipid and apolipoprotiin content in lipoproteins during fasting in European sea bass (Dicentrarcbus labrax L.) Comparative Biochemistry and Physiology 118A: 1233-1239.
Schoonjans, K., Staels, B., Auwerx, J., 1996a. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. Journal of Lipid Research 37, 907-925.
Schoonjans, K., Staels, B., Auwerx, J., 1996b. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochimica et Biophysica Acta 1302, 93-109.
Schoonjans, K., Watanabe, M., Suzuki, H., Mahfoudi, A., Krey, G., Wahli, W., Grimaldi, P., Staels, B., Yamamoto, T., Auwerx, J., 1995. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. The Journal of Biological Chemistry 270, 19269-19276.
Sessler, A.M., Ntambi, J.M., 1998. Polyunsaturated fatty acid regulation of gene expression. The Journal of Nutrition 128, 923-926.
Shao, D., Lazer, M.A., 1997. Peroxisome proliferator activated receptorα, CCAAT/enhancer-binding proteinα, and cell cycle status regulate the commitment to adipocyte differentiation. Journal of Biological Chemistry 272, 21473-21478.
Shearer, K.D. 1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119, 63-88.
Sheridan, M.A., 1988. Lipid dynamic in fish: aspects of absorption, transportation, deposition and mobilization. Comparative Biochemistry and Physiology 90B, 679-690.
Shillabeer, G., Lau, D.C.W., 1994. Regulation of new fat cell formation in rate : the role of dietary fats. Journal of Lipid Research 35, 592-600.
Shimeno, S., Hosokawa, H., Takede, M., Kajiyama, H., 1980. Effects of calorie to protein ratios in formulated diet on the growth, feed conversion and body composition of young yellowtail. Nippon Suisan Gakkaishi 46, 1083-1087.
Spalding, K.L., Arner, E., Westermark, P.O., Bernard, S., Buchholz, B.A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., Concha, H., Hassan, M., Ryden, M., Frisen, J., Arner, P., 2008. Dynamics of fat cell turnover in humans. Nature 453, 783-787.
Spurlock, M.E., Bidwell, C.A., Houseknecht, K.L., Kuske, J.L., Camacho-Rea, C., Frank, G.R., Willis, G.M., 2002. Nutritionally induced adipose hypertrophy in young pigs is transient and independent of changes in the expression of the obese and peroxisome proliferation activated receptor genes. The Journal of Nutritional Biochemistry 13, 112-120.
Takeda, M., Shimeno, S., Hosokawa, H., Kajiyama, H., Kaisyo, T., 1975. The effect of dietary calorie-to-protein ratio on the growth, feed conversion and body composition of young yellowtail. Nippon Suisan Gakkaishi 41, 443-447.
Taylor, S.M., Jones, P.A., 1979. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17, 771-779.
Terova, G., Gornati, R., Rimoldi, S., Bernardini, G., Saroglia, M., 2005. Quantification of a glucocorticoid receptor in sea bass (Dicentrarchus labrax, L.) reared at high stocking density. Gene 357, 144-151.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882.
Tocher, D.R., 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science 11, 107-184.
Tontonoz, P., Graves, R.A., Budavari, A.I., Erdjument-Bromage, H., Lui, M., Hu, E., Tempst, P., Spiegelman, B.M., 1994a. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPARγ and RXRα. Nucleic Acids Research 22, 5628-5634.
Tontonoz, P., Hu, E., Spiegelman, B.M., 1994b. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipidactivated transcriptionfactor. Cell 79, 1147-1156.
Tucker, C.S., Hirono, I., Aoki, T., 2002. Molecular cloning and expression of CCAAT/enhancer binding proteins in Japanese flounder Paralichthys olivaceus. Developmental and Comparative Immunology 26, 271-282.
Tugwood, J.D., Issemann, I., Anderson, R.G., Bundell, K.R., McPheat, W.L., Green, S., 1992. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5'' flanking sequence of the rat acyl CoA oxidase gene. The EMBO Journal 11, 433-439.
Umino, T., Nakagawa, H., Arai, K., 1996. Development of adipose tissue in juvenile red sea bream. Fisheries Science 62, 520-523.
Uppenberg, J., Svensson, C., Jaki, M., Bertilsson, G., Jendeberg, L., Berkenstam, A., 1998. Crystal structure of the ligand binding domain of the human nuclear receptor PPARγ. The Journal of Biological Chemistry 273, 31108-31112.
Walczak, R., Tontonoz, P., 2002. PPARadigms and PPARadoxes: expanding roles for PPARgamma in the control of lipid metabolism. Journal of Lipid Research 43, 177-186.
Walzem, R.L., Storebakken, T., Hung, S.S.O., Hansen, R.J., 1991. Relationship between growth and selected liver enzyme activities of individual rainbow trout. The Journal of Nutrition 121, 1090-1098.
Wang, J.T., Liu, Y.J., Tian, L.X., Mai, K.S., Du, Z.Y., Wang, Y., Yang, H. J. 2005. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 249, 439-447.
Wang, Y.X., Lee, C.H., Tiep, S., Yu, R.T., Ham, J., Kang, H., Evans, R.M., 2003. Peroxisome proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159-170.
Watanabe, T., 1982. Lipid nutrition in fish. Comparative Biochemistry and Physiology 73B, 3-15.
Weatherup, R.N., McCracken, K.J., Foy, R., Rice, D., McKendry, J., Mairs, R.J., Hoey, R., 1997. The effects of dietary fat content on performance and body composition of farmed rainbow trout (Oncorhynchus mykiss). Aquaculture 151, 173-184.
Wier, M.L., Scott, R.E., 1986. Regulation of the terminal event in cellular differentiation: biological mechanisms of the loss of proliferative potential. Journal of Cell Biology 102, 1955-1964.
Willson, T.M., Brown, P.J., Sternbach, D.D., Henke, B.R., 2000. The PPARs: fromorphan receptors to drug discovery. Journal of Medicinal Chemistry 43, 527-550.
Willson, T.M., Lehmann, J.M., Kliewer, S.A., 1996. Discovery of ligands for the nuclear peroxisome proliferator-activated receptors. Annals of the New York Academy of Sciences 804, 276-283.
Wilson, M.S., Bakermans, C., Madsen, E.L., 1999. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Applied and Environmental Microbiology 65, 80-87.
Wilson T.M., Wahli, W., 1997. Peroxisome proliferator-activated receptor agonists. Current Opinion in Chemical Biology 1, 235-241.
Wood, J.D., Enser, M., Fisher, A.V., Nute, G.R., Sheard, P.R., Richardson, R.I., Hughes, S.I., Whittington, F.M., 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science 78, 343–358.
Wu, Z., Bucher, N.L, Farmer, S.R., 1996. Induction of peroxisome proliferator- activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Molecular and Cellular Biology 16, 4128-36.
Wu, Z., Xie, Y., Bucher, N.L., Farmer, S.R., 1995. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes and Development 9, 2350-63.
Xu, H.E., Lambert, M.H., Montana, V.G., Plunket, K.D., Moore, L.B., Collins, J.L., Oplinger, J.A., Kliewer, S.A., Gampe, R.T., Jr., McKee, D.D., Moore, J.T., Willson, T.M., 2001. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proceedings of the National Academy of Sciences of the United States of America 98, 13919-13924.
Xu, H.E., Lambert, M.H., Montana, V.G., Parks, D.J., Blanchard, S.G., Brown, P.J., Sternbach, D.D., Lehmann, J.M., Wisely, G.B., Willson, T.M., Kliewer, S.A., Milburn, M.V., 1999. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Molecular Cell 3, 397-403.
Yoshimoto, K., Nakamura, T., Ichihara, A., 1983. Reciprocal effects of epidermal growth factor on key lipogenic enzymes in primary cultures of adult rat hepatocytes. Induction of glucose-6-phosphate dehydrogenase and suppression of malic enzyme and lipogenesis. The Journal of Biological Chemistry 258, 12355-12360.
Yu, K., Bayona, W., Kallen, C.B., Harding, H.P., Ravera, C.P., McMahon, G., Brown, M., Lazar, M.A., 1995. Differential activation of peroxisome proliferator- activated receptors by eicosanoids. The Journal of Biological Chemistry 270, 23975-23983.
Yue, S., Duncan, I.J.H., Moccia, R.D., 2006. Do differences in conspecific body size induce social stress in domestic rainbow trout? Environmental Biology of Fishes 76, 425-431.
Young, R.A., Salans, B.L., Sims, E.A., 1982. Adipose tissue cellularity in woodchucks: effects of season and captivity at an early age. Journal of Lipid Research 23, 887-892.
Zhou, S., Ackman, R.G., Morrison, C., 1996. Adipocytes and lipid distribution in the muscle tissue of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 53, 326-332.
Zhou, S., Robert, G., Ackman, R.G., Morrison, C., 1995. Storage of lipids in the myosepta of Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry 14, 171-178.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top