(3.239.56.184) 您好!臺灣時間:2021/05/13 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李林翰
研究生(外文):Lin-han Lee
論文名稱:海鱺(Rachycentroncanadum)腹部肌肉與肝臟脂肪與三酸甘油酯生合成相關酵素活性與基因表現之研究
論文名稱(外文):Studies on the enzyme activity and gene expression of lipid and triacylglycerol biosynthesis of cobia (Rachycentron canadum).
指導教授:李澤民李澤民引用關係
指導教授(外文):Tse-Min Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:189
中文關鍵詞:甘油磷酸去氫酶磷酸烯醇式丙酮酸羧激酶脂肪酸合成酶三酸甘油酯海鱺
外文關鍵詞:glycerol-3-phosphate dehydrogenasefatty acid synthasephosphoenolpyruvate carboxykinasetriacylglycerolcobia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討小琉球箱網養殖海鱺 (Rachycentron canadum) 快速成長期 (2006 年 10 月至 2007 年 4 月) 腹部肌肉與肝臟的粗脂質及三酸甘油酯 (triacylglycerol, TAG) 之變化量及其相關調控基因與酵素活性的表現情形。海鱺飼料粗脂肪為12%,肝臟為30-40%,肌肉在 2 月時最高為 13 %,其餘月份粗脂肪約為 9-11%。肌肉三酸甘油酯含量由12月的 22% 上升至2 月的 40 %,Oil red-O (ORO) 染色,也發現腹部肌肉及肝臟三酸甘油酯的累積量有相同趨勢。腹部肌肉三酸甘油酯及脂肪酸在 2 月的累積與三酸甘油酯合成之前身物glycerol-3-phosphate (G-3-P) 的合成酵素glycerol-3-phosphate dehydrogenase (GPDH, EC 1.1.1.8) 與脂肪酸生合成酵素 fatty acid synthase (FAS, EC 2.3.1.85) 活性及基因表現顯著上升有關。Phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.32) 及glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12)活性與基因表現在 2 月增加。肝臟三酸甘油酯及脂肪酸含量在3-4 月下降,但 FAS 及 PEPCK 活性及 mRNA 量卻在 3 月上升,可能是 3-4 月肝臟大量合成脂肪酸,但卻快速運送到其他部位,導致含量下降。活性與基因表現受抑制,指出可能透過 mitochondria 形成 acetyl-CoA,脂肪酸合成增加,FATP2 mRNA 量在 2 月增加,指出由血液運送到肌肉之脂肪酸也會增加。調控脂質代謝的轉錄因子 (PPARα、PPARβ、PPARγ) mRNA 量相符,促進 G-3-P 合成提供形成。
本研究由酵素活性與 mRNA 量證實腹部肌肉由 PEPCK 提供 acetyl-CoA,並經 FAS 合成脂肪酸,再加上運送進入之脂肪酸,與GPDH 提供 TAG 之骨架後,造成 TAG 含量在 2 月增加。
The study was to investigate the changes in (1) triacylglycerol (TAG) contents and its relationship to (2) lipid synthesis- and metabolism-related enzyme activity and (3) their gene expression in cobia (Rachycentron canadum) during the fast growth period (from October 2006 to April 2007) in ventral muscle and liver in Hsiao-Lu-Chiao island in southwestern Taiwan. The crude lipid was 12% for fed diet, 30-40% for liver while 13% in February and 11% to 9% in other month for muscle. The TAG content of crude lipid was 36 % for fed diets, and from 22% (December) to 40% (February) for muscle, and from 63% (October to February) to 47% (March) for liver. Oil red-O (ORO) staining showed that TAG accumulated in muscle in February but in December in liver. Muscle TAG contents and enzyme activities and mRNA levels of GPDH and FAS increased in February. A decrease in GPDH enzyme activity and mRNA levels but an increase in PEPCK enzyme activity and mRNA levels indicate the increased supply of acetyl-CoA for fatty acid synthesis is in muscle. An increase in FATP2 mRNA levels suggest the influx of fatty acid also contributes to increased fatty acid accumulation in muscle.In liver, TAG and fatty acid contents decreased in March April but increased FAS and PEPCK enzyme activity and mRNA levels. It is possible that fatty acid synthesis is enhanced in March, but a fast transport to other organs results in a net decline in liver fatty acid contents and subsequently a decrease in TAG contents. FATP contents decreased in March-April mRNA, indicating that the influx of fatty acid in decreasing in liver in adult fish. GPDH and GAPDH were not related to lipid metabolism in liver. These data from enzyme activity and mRNA level, demonstrated that a potentially increase in acetyl-CoA via PEPCK contributes to fatty acid synthesis and GPDH-mediated synthesis of G-3-P provide the C skeleton for TAG synthesis.
謝辭------------------------------------------------- i
中文摘要------------------------------------------- ii
英文摘要------------------------------------------- iii
目錄------------------------------------------------- iv
表目錄---------------------------------------------- v
圖目錄---------------------------------------------- viii
附錄目錄------------------------------------------- xi
縮寫字對照---------------------------------------- xiv
一、前言------------------------------------------- 1
二、實驗目的與策略---------------------------- 8
三、實驗架構------------------------------------- 9
四、材料與方法---------------------------------- 10
五、結果------------------------------------------- 23
六、討論------------------------------------------- 35
七、參考文獻------------------------------------- 41
八、表---------------------------------------------- 52
九、圖---------------------------------------------- 79
十、附錄------------------------------------------- 126
沈士新、沈亮廷 (2003)。海鱺的營養與飼料。海鱺養殖科技研發與產業發展研討會。台灣,中華民國。
施瑔芳 (1999)。魚類生理學。水產出版社。台灣,中華民國。
李愛杰 (1998)。水產動物營養與飼料學。水產出版社。台灣,中華民國。
李玉蘭 (2000)。箱網養殖海鱺之化學組成特性及其季節與貯存變化。國立台灣海洋大學食品科學系碩士論文。台灣,中華民國。
邱文瑞 (2002)。海鱺飼料化學組成特性及其影響魚肉品質之探討。國立台灣海洋大學食品科學系碩士論文。台灣,中華民國。
林瑞堂 (2000)。影響海鱺化學組成分因素之探討。國立台灣海洋大學食品科學系碩士論文。台灣,中華民國。
林佩貞 (2008)。飼料添加植物油脂對海鱺稚魚成長、脂肪狀態、代謝酵素活性、及脂肪酸組成的影響。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
陳秀男 (2003)。箱網養殖海鱺病害防治技術之開發。國立台灣大學生命科學學系碩士。台灣,中華民國。
陳俊璋 (2005)。海鱺成長期間體脂肪細胞大小密度及脂肪生成相關參數之變化。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
黃何興 (2000)。餌料油脂對海鱺幼魚成長與體組成的影響。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
曾梅雀 (2008)。海鱺脂肪代謝相關基因 LPL 和 FATPs 之選殖及飼料脂肪酸組成對其表現之影響。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
楊文福 (2002)。飼料中不同油脂含量與來源對海鱺成長與體組成之影響。
國立台灣海洋大學水產養殖系碩士論文。台灣,中華民國。
蔡美玲 (2009)。養殖海鱺過氧化體增生活化受體 (PPAR) 基因表現與體脂肪之研究。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。
Alvarez M.J., Diez A., Lopez-Bote C., Gallego M., Bautista J.M., 2000. Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes. Br. J. Nutr. 84, 619–628.
Bandarra N.M., Batista I., Nunes M.L., Empis J.M., Christie W.W., 1997. Seasonal Changes in Lipid Composition of Sardine (Sardina pilchardus). J. Food Sci. 62, 40–42.
Batista-Pinto C., Rodrigues P., Rocha E., Lobo-da-Cunha A., 2005. Identification and organ expression of peroxisome proliferator activated receptors in brown trout (Salmo trutta f. fario). Biochim. Biophys. Acta 1731, 88–94.
Boukouvala E., Antonopoulou E., Favre-Krey L., Diez A., Bautista J.M., Leaver M.J., Tocher D.R., Krey G., 2004. Molecular characterization of three peroxisome proliferator-activated receptors from the sea bass (Dicentrarchus labrax). Lipids 39, 1085–1092.
Bradford E., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
Briggs J.C., 1960. Fishes of worldwide (circumtropical) distribution. Copeia 3, 171–180.
Buzzi M., Henderson R.J., Sargent J.R., 1996. The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochim. Biophys. Acta. 1299, 235–244.
Castledine A.J., Buckley J.T., 1980. Distribution and mobility of n- 3 fatty acids in rainbow trout fed varying levels and types of dietary lipid. J. Nutr. 110, 675–685.
Choi C.Y., Min B.H., Jo P.G., Chang Y.J., 2007. Molecular cloning of PEPCK and stress response of black porgy (Acanthopagrus schlegeli) to increased temperature in freshwater and seawater. Gen. Comp. Endocrinol. 152, 47–53.
Chou R.L., Su M.S., Chen H.Y., 2001.Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture 193, 81–89.
Craig S.R., MacKenzie D.S., Jones G., Gatlin D.M., 2000. Seasonal changes in the reproductive condition and body composition of free-ranging red drum, Sciaenops ocellatus. Aquaculture 190, 89–102.
Desvergne B., Wahli W., 1999. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688.
Driedzic W.R., Clow K.A., Short C.E., Ewart K.V., 2006. Glycerol production in rainbow smelt (Osmerus mordax) may be triggered by low temperature alone and is associated with the activation of glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. J. Exp. Biol. 209, 1016–1023.
Ewart K.V., Richards R.C., Driedzic W.R., 2001. Cloning of glycerol-3-phosphate dehydrogenase cDNAs from two fish species and the effect of temperature on enzyme expression in rainbow smelt (Osmerus mordax). Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 128, 401–412.
Fauconneau B., Andre S., J. Chmaitilly, Le Bail P.-Y., Krieg F., Kaushik S. J., 1997. Control of skeletal muscle fibres and adipose cells size in the flesh of rainbow trout. J. Fish Biol. 50, 296–314.
Folch J., Lees M., Sloan S.G.H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.
Franks J.S., Garber N.M., Warren J.R., 1996. Stomach contents of juvenile cobia, Rachycentron canadum, from the northern Gulf of Mexico. Fish. Bull. 94, 374–380.
Festuccia W.T., Kawashita N.H., Garofalo M.A., Moura M.A., Brito S.R., Kettelhut I.C., Migliorini R.H.,2003.Control of glyceroneogenic activity in rat brown adipose tissue.Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, 177–182.
Frank P.G., Marcel Y.L., 2000. Apolipoprotein A-I: structure–function relationships. J. Lipid Res. 41, 853–872.
Greenway C.S., Storey B.K., 2000. Seasonal change and prolonged anoxia affect the kinetic properties of phosphofructokinase and pyruvate in oysters. J. Comp. Physiol. 170, 285–293.
Hall J.R., Short C.E., Driedzic W.R., 2006. Sequence of Atlantic cod (Gadus morhua) GLUT4, GLUT2 and GPDH: developmental stage expression, tissue expression and relationship to starvation-induced changes in blood glucose. J. Exp. Biol. 209, 4490–4502.
Hanson R.W., Reshef L., 1997. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu. Rev. Biochem. 66, 581–611.
Hanson R.W., Reshef L., 2003. Glyceroneogenesis revisited. Biochimie 85, 1199–1205.
Hardy R. and Keay J.N., 1972. Seasonal variations in the chemical composition of Cornish mackerel, Scomber scombrus (L) with detailed reference to the lipids. Int. J. Food Sci. Tech. 7, 125–137.
Hayes J.P., Tipton K.F., 2002. Interactions of the neurotoxin 6-hydroxydopamine with glyceraldehyde-3-phosphate dehydrogenase. Toxicol. Lett. 128, 197–206.
He Q., Qiao D., Bai L., Zhang Q., Yang W., Li Q., Cao Y., 2007. Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina. J. Plant. Physiol. 164, 214–20.
Ibabe A., Bilbao E., Cajaraville M.P., 2005. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochem. Cell Biol. 123, 75–87
Issemann I., Green S., 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650.
Ivy C.A., Nesheim M.C., 1973. Factors influencing the liver fat content of laying hens. Poultry Sci. 52, 281–291.
Jacobs N.J., VanDemark P.J., 1960. The purification and properties of the alpha-glycerophosphate-oxidizing enzyme of Streptococcus faecalis 10C1. Arch. Biochem. Biophys. 88, 250–255.
Jobling M., Johansen, S.J.S., 2003. Fat distribution in Atlantic salmon, Salmo salar L., in relation to body size and feeding regime. Aquac. Res. 34, 311–316.
Kersten S., Desvergne B., Wahli W., 2000. Roles of PPARs in health and disease. Nature 405, 421–424.
Kim M.K., Dubacq J.P., Thomas J.C., Giraud G., 1996. Seasonal variations of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 43, 49–55.
Koditschek L.K., Umbreit W.W., 1969. Alpha-glycerophosphate oxidase in Streptococcus faecium F 24. J. Bacteriol. 98, 1063–1068.
Kondo H., Misaki R., Gelman L., Watabe S., 2007. Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. Gen. Comp. Endocrinol. 154, 120–127.
Leaver M.J., Bautista J.M., Bjornsson B.T., Jonsson E., Krey G., Tocher D.R., Torstensen B. E., 2008. Towards fish lipid nutrigenomics: current state and prospects for fin-fish aquaculture. Rev. Fish. Sci. 16, 73–94.
Leaver M.J., Boukouvala E., Antonopoulou E., Diez A., Favre-Krey L., Ezaz M.T., Bautista J.M., Tocher D.R., Krey G., 2005. Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 146, 3150–3162.
Lewis J.M., Ewart K.V., Driedzic W.R., 2004. Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production. Physiol. Biochem. Zool. 77, 415–422.
Liao I.C., Huang T.S., Tsai W.S., Hsueh C.M., Chang S.L., Lean?o E. M., 2004. Cobia culture in Taiwan: current status and problems. Aquaculture 237, 155–165.
Liao, I.C., Su, H.M., Chang, E.Y., 2001. Techniques in finfish culture in Taiwan. Aquaculture 200, 1–31.
Liebscher R.S., Richards R.C., Lewis J.M., Short C.E., Muise D.M., Driedzic W.R., Ewart K.V., 2006. Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes. Physiol. Biochem. Zool. 79, 411–423.
Lillie R.D., Ashburn L.L., 1943. Super-saturated solutions of fat stains in dilute isopropanol for demonstration of acute fatty degenerations not shown by Herxheimer technique. Arch. Pathol. 36, 432.
Maton A., Hopkins J., McLaughlin C.W., Johnson S., Warner M.Q., LaHart D., Wright J.D., 1993. Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall.
Manchado M., Infante C., Asensio E., Canavate J.P., 2007. Differential gene expression and dependence on thyroid hormones of two glyceraldehyde-3-phosphate dehydrogenases in the flatfish Senegalese sole (Solea senegalensis Kaup). Gene. 400, 1–8.
Matsubara Y., Sato K., Ishii H., Akiba Y., 2005. Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 141, 108–115.
Minamino K., Yanaga Y., Masui H., Ohtsuru M., 2004. Effects of a water-soluble bioactive factor from Grifola frondosa, the mushroom Maitake on adipocyte differentiation. Food Sci. Technol. Res. 10, 416–419.
Morrison W.R., Smith L.M., 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipid with boron fluoride-methanol. J. Lipid Res. 53, 600–608.
Nanton D.A., Vegusdal A., Rora A.M.B., Ruyter B., Baeverfjord G. and Torstensen B.E., 2007. Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar) fed fish oil and vegetable oil. Aquaculture 265, 230–243.
Ohnuki K., Haramizu S., Ishihara K., Fushiki T., 2001. Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid. Biosci. Biotechnol. Biochem. 65, 2200–2204.
Oku H., Ogata H.Y., 2000. Body lipid deposition in juvenile red sea bream Pagrus major, yellowtail Seriola quinqueradiata and Japanese flounder Paralichthys olivaceus. Fish. Sci. 66, 25–31.
Oku T., Sugawara A., Choudhury M., Komatsu M., Yamada S., Ando S., 2009. Lipid and fatty acid compositions differentiate between wild and cultured Japanese eel (Anguilla japonica). Food Chem 115, 436–440.
Polvi S.M., Ackman R.G., 1992. Atlantic salmon Salmo salar muscle lipids and their response to alternative dietary fatty acid sources. J. Agric. Food. Chem. 40, 1001–1007.
Postic C., Girard J., 2008. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838.
Pratoomyot J., Bendiksen E.A., Bell J.G., Tocher D.R., 2008. Comparison of effects of vegetable oils blended with southern hemisphere fish oil and decontaminated northern hemisphere fish oil on growth performance, composition and gene expression in Atlantic salmon (Salmo salar L.). Aquaculture 280, 170–178.
Proudfoot H.J., Brownlee G.G., 1976. 3'' non-coding region sequences in eukaryotic messenger RNA. Nature 263, 211–214.
Raymond J.A., 1995. Glycerol synthesis in the rainbow smelt Osmerus mordax. J. Exp. Biol. 198, 2569–2573.
Richmond W., 1973. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 19, 1350–1356.
Saito T., Abe D., Sekiya K., 2008. Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2. Biochem. Biophys. Res. Commun. 372, 835–839.
Sargent J.R., Tocher D.R., and Bell J.G., 2002. Fish Nutrition, 3rd ed. (Halver J.E. and Hardy R.W., Eds.). San Diego, CA: Academic Press. The lipids, 181–257.
Schoonjans K., Staels B., Auwerx J., 1996. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37, 907–925.
Sheridan M.A., 1988. Lipid dynamics in fish: Aspects of absorption, transportation, deposition and mobilization. Comp. Biochem. Physiol. 90, 679–690.
Shiau C.Y., 2007. Biochemical composition and utilization of cultured cobia (Rachyentron canadum). In: Liao, I.C., Leano, E.M. (Eds.), Cobia Aquaculture: Research, Development and Commercial Production. Asian Fisheries Society, Manilla, Philippines, World Aquaculture Society, Louisiana, USA, The Fisheries Society of Taiwan, Keelung, Taiwan, and National Taiwan Ocean University, Keelung, Taiwan, pp 147–156.
Shillabeer G., Hornford J., Forden J.M., Wong N.C., Lau D.C., 1990. Hepatic and adipose tissue lipogenic enzyme mRNA levels are suppressed by high fat diets in the rat. J Lipid Res. 4, 623–31.
Shirai N., Suzuki H., Tokairin S., Ehara H., Wada S., 2002. Dietary and seasonal effects on the dorsal meat lipid composition of Japanese (Silurus asotus) and Thai catfish (Clarias macrocephalus and hybrid Clarias macrocephalus and Clarias galipinus). Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 132, 609–619.
Shoulders C.C., Kornblihtt A.R., Munro B.S., Baralle F.E., 1983. Gene structure of human apolipoprotein AI. Nucleic Acids Res. 11, 2827–2837.
Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D., Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K., Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L., Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C., Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J., Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H., Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W., Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G., Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S., Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E., Jones S.J., Marra M.A., 2002. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U.S.A. 99, 16899–903.
Strittmatter P., Spatz L., Corcoran D., Rogers M.J., Setlow B., Redline R., 1974. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc. Natl. Acad. Sci. U S A. 71, 4565–4569.
Takeuchi T., Shiina Y., Watanabe T., 1991. Suitable protein and lipid levels in diet for fingerlings of red sea bream Pagrus major. Nippon Suisan Gakkai Shi 56, 293–299.
Tocher D.R., 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 11, 107–184.
Todorcevi? M., Vegusdal A., Gjoen T., Sundvold H., Torstensen B.E., Kjaer M.A., Ruyter B., 2008. Changes in fatty acids metabolism during differentiation of Atlantic salmon preadipocytes; effects of n-3 and n-9 fatty acids. Biochim. Biophys. Acta 1781, 326–335.
Torstensen B. E., Nanton D. A., Olsvik P. A., Sundvold H., Stubhaug I., 2009. Gene expression of fatty acid-binding proteins, fatty acid transport proteins (cd36 and FATP) and β-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquaculture Nutrition 15, 440–451.
Treberg J.R., Lewis J.M., Driedzic W.R., 2002. Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus). Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 132, 433–438.
Tsai M.L., Chen H.Y., Tseng M.C., Chang R.C., 2008. Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture. Gene 425, 69–78.
Tsuboyama-Kasaoka N., Takahashi M., Tanemura K., Kim H.J., Tange T., Okuyama H., Kasai M., Ikemoto S., Ezaki O., 2000. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49, 1534–1542.
Tucker J.W., Lellis W.A., Vermeer G.K., Roberts D.E., Woodward P.N., 1997.The effects of experiment starter diets with different levels of soybean or menhaden oil on red drum (Sciaenops ocellatus). Aquaculture 149, 323–339.
Volpe J.J., Vagelos P.R., 1976. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol. Inh. 56, 339–417.
Woods I.G., Wilson C., Friedlander B., Chang P., Reyes D.K., Nix R., Kelly P.D., Chu F., Postlethwait J.H., Talbot W.S., 2005. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res. 15, 1307–14.
Yang T.T.C., Koo M.W.L., 2000. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci. 66, 411–423.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔