(18.232.50.137) 您好!臺灣時間:2021/05/06 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林民宗
研究生(外文):Ming-Tsung Lin
論文名稱:黃鱔(Monopterus albus)夏眠時期肌肉結構與特性之研究
論文名稱(外文):Study on the muscle characteristics of the Swamp Eel, Monopterus albus, during Aestivation
指導教授:莫顯蕎莫顯蕎引用關係
指導教授(外文):Mok, Hin-Kiu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:51
中文關鍵詞:蛋白質體學夏眠黃鱔
外文關鍵詞:Monopterus albusaestivationproteomics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黃鱔(Monopterus albus)為底棲性淡水魚類,適應能力極強,對水溫與水質等重要的生活環境條件的要求不高,大多棲息在河川、湖泊、池塘及稻田中,為適合大量養殖魚種。當環境出現高溫缺水的狀況時,黃鱔會在泥質底質挖洞鑽入,並呈現休眠的狀態,休眠期間完全靜止不動並且不再進食,俗稱「夏眠」。前人進行人類肌肉萎縮研究指出,長時間不使用肌肉,肌肉內將有肌纖維面積減少的現象,使肌肉逐漸失去力量並萎縮稱之「廢用性肌肉萎縮」,並有研究指出,冬眠的熊亦有廢用性肌肉萎縮之現象,但其萎縮程度並不如人類有大規模萎縮現象產生。本研究利用生物生長箱調控高溫環境因子,使黃鱔進入休眠,並利用組織學及蛋白質體學探討黃鱔在休眠時期肌肉的結構與特性,並將黃鱔肌肉與冬眠熊類肌肉做比較,以此驗證夏眠生物與冬眠生物在休眠時期肌肉萎縮程度是否相當,並期在蛋白體資料中發現黃鱔防止萎縮的可能機制。本研究結果顯示,黃鱔肌肉在100天的休眠期間,肌肉萎縮了約48%,但依然不影響其肌肉一般使用,且沒有如非休眠生物一般的大規摸萎縮現象。蛋白質體學研究上發現,休眠期中黃鱔肌肉並無特殊性蛋白質產生或消失,但卻發現到在壓力蛋白質群、肌肉蛋白質群及新陳代謝蛋白質群三大群組上,有明顯的蛋白質含量改變的特徵。黃鱔在夏眠時期如同熊類一般有著小規模廢用性肌肉萎縮現象的產生,且在肌肉內蛋白質的組成有著顯著的變化,相信未來可利用黃鱔取代冬眠熊類,做為一適當廢用性肌肉萎縮的研究物種。
The swamp eel, Monopterus albus, is a benthic freshwater species, inhabiting the muddy ponds, canals, and rice fields. They are highly adaptive to stressful environment and, as a consequence M. albus is an aquaculture species. Under adverse environmental conditions, such as drought and high temperature, swamp eels burrow into the mud and enter into a stage of aestivation which is characterized by extremely slow physiological processes and complete quiescence. Reports on human muscle atrophy as a result of prolong lacking of muscle activity indicate that muscle atrophy is associated with reductions of number and sizes of muscle fibers. And this symptom is also called the disuse muscle atrophy. In this study, swamp eels were induced into aestivation by placing in a growth chamber under high temperature and low water contain in the mud substrate. Results show that when the swamp eel had been in aestivated for 100 days, the skeletal muscle atrophied about 48%. However, such “atrophy” did not influence normal functions of the muscles, and the degree of atrophy much lower than non-aestivation species. The 2-DE results of the M. albus’s muscle during 100 days of aestivation show that appearance or disappearance of new function proteins were not observed. However these were significant difference between three protein groups, including stress proteins, sarcomeric proteins and metabolic proteins. These three groups of proteins play important roles in prevention of atrophy of disused muscles. It is believe that M. albus is more suitable species than bear in the study of disuse muscle atrophy.
目錄
章次 頁數
謝辭 …………………………………………………………………………… i
中文摘要 ……………………………………………………………………… ii
英文摘要 ……………………………………………………………………… iii
目錄 …………………………………………………………………………… iv
圖目錄 ……………………………………………………………………….… v
表目錄 ………………………………………………………………………… vi
前言 ……………………………………………………………………………. 1
材料與方法 ……………………………………………………………………. 6
結果 ……………………………………………………………………………. 18
討論 …………………………………………………………...……………….. 21
參考文獻 ………………………………………………………………………. 25
圖 ………………………………………………………………………………. 29
表 ………………………………………………………………………………. 37
個人履歷 ………………………………………………………………………. 42
沈世傑 主編(1993)合鰓魚目,合鰓魚科。國立台灣大學動物學系。臺灣魚類誌,233頁。
邱國勛(2008)盲鰻骨骼肌及心肌蛋白代謝體研究。國立中山大學海洋生物研究所博士論文。700頁。
何宜靜(2009)五種鰏之共生菌 Photobacterium leiognathi 外膜蛋白的差異。國立中山大學海洋生物研究所碩士論文。47頁。
Abbott, C. C. 1885. Aestivation of mammals, what is it? Science. 6:402-404.
Abe, A. S. 1995. Estivation in South American amphibians and reptiles. Brazilian Journal of Medical and Biological Research. 28:1241-1247
Adams, G. R., Caiozzo, V. J. & Baldwin, K. M. 2003. Skeletal muscle unweighting: spaceflight and ground-based models. Journal of Applied Physiology. 95:2185-2201.
Allner, B., Wegener, G., Knacker, T. & Stahlschmidt-Allner, P. 1999. Electrophoretic determination of estrogen-induced protein in fish exposed to synthetic and naturally occurring chemicals. The Science of the Total Environment. 233:21-31.
Anderson, K., Potter, A., Baban, D. &d Davies, K. E. 2003. Protein expression changes in spinal muscular atrophy revealed with a novel antibody array technology. Brain Research. 126:2052-2064.
Angela, M. M. 2002. Effects of induced aestivation in Protopterus annectens: a histomorphological study. Journal of Experimental Zoology. 292:26-31.
Bemis, W. E., Burggren, W. W. & Kemp, N. E. 1987. The biology and evolution of lungfish. Alan R. Liss, New York.
Chew, S. F., Gan, J. & Ip, Y.K. 2005. Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in Mud. Physiological and Biochemical Zoology. 620-629.
Etheridge, K. 1990. Water balance in estivating sirenid salamanders (Siren lacertian). Herpetologica. 46:400-406.
Gomes, M. D., Lecker, S. H., Jagoe, R. T., Navon, A. & Goldberg, A. 2001. Atrogin-1, a muscle-specific F-box protein higly expressed during muscle atrophy. Cell Biology. 98:14440-14445.
Harlow, H. J. & Lohuis, T. 2001. Muscle strength in overwintering bears. Nature. 409:997.
Hudson, N. J., Bennett, M. B. & Franklin, C. E. 2004. Effect of aestivation on long bone mechanical properties in the green-striped burrowing frog, Cyclorana alboguttata. The Journal of Experimental Biology. 207:475-482.
Hudson, N. J. & Franklin, C. E. Effect of aestivation on muscle characteristics and locomotor performance in the green-striped burrowing frog, Cyclorana alboguttata. 2002. The Journal of Comparative Physiology B. 172:177-182.
Hudson, N. J. & Franklin, C. E. Maintaining muscle mass during extended disuse: aestivating frogs as a model species. 2002. The Journal of Experimental Biology. 205:2297–2303.
Hudson, N. J., Lehnert, S. A., Ingham, A. B., Symonds, B., Franklin, C. E. & Harper, G.S. Lessons from an estivating frog: sparing muscle protein despite starvation and disuse. 2006. The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 290:836-843.
Hudson, N. J., Harper, G.S., Allingham, P. G., Franklin, C. E., Barris, W. & Lehnert, S. A. 2007. Skeletal muscle extracellular matrix remodelling after aestivation in the green striped burrowing frog, Cyclorana alboguttata. Comparative Biochemistry and Physiology, Part A. 146:440-445.
Icardo, J. M., Amelio, D., Garofalo, F., Colvee, E., Cerra, M. C., Wang, W. P., Tota, B. & Ip, Y. K. 2008. The structural characteristics of the heart ventricle of the African lungfish Protopterus dolloi: freshwater and aestivation. Journal of Anatomy. 213:106-119.
Ip, Y. K., Tay, A. S. L., Lee, K. H. & Chew, S. F. 2003. Strategies for surviving high concentrations of environmental ammonia in the swamp eel Monopterus albus. Physiological and Biochemical Zoology. 390-405.
Isfort, R. J., Wang, F., Greis, K. D., Sun, Y., Keough, T. W., Bodine, S. C. & Anderson, N. L. 2002. Proteomic analysis of rat soleus and tibialis anterior muscle following immobilization. Journal of Chromatograthy B. 769:323-332.
Kennett, R., Christian, K. 1994. Metabolic depression in estivating long-neck turtles (Chelodina rugosa). Pgysiol Zool. 67:1087-1102.
Land, S. C., Bernier, N. J. 1995. Estivation: mechanisms and control of metabolic suppression. Biochenistry and Molecular Biology of Fishes. 5:381-412.
Lee, K., Park, J. Y., Yoo, W., Gwag, T., Lee, J. W., Byun, M. W. & Choi, I. 2008. Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse
in dormancy: proteomic and molecular assessment. Journal of Cellular Biochemistry. 104:642-656.
Moll, R., Holzhausen, H. J., Mennel, H. D., Kuhn, C., Baumann, R., Taege, C. &
Franke, W. W. 2006. The cardiac isoform of α-actin in regenerating and
atrophic skeletal muscle, myopathies and rhabdomyomatous tumors: an
immunohistochemical study using monoclonal antibodies. Virchows Arch.
449:175-191.
Naito, H., Powers, S. K., Demirel, H. A., Sugiura, T., Dodd, S. L. & Aoki, J. 2000. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. Journal of Applied Physiology. 88:359-363.
Nicks, D. K., Beneke, W. M., Key, R. M. & Timson, B. 1989. Muscle fibre size and number following immobilization atrophy. Journal of Anatomy. 163:1-9.
Power, S. K., Kavazis, A. N. & DeRuisseau, K. C. 2004. Mechanisms of disuse muscle atrophy: role of oxidative stress. The American Journal of Physiology – Regulatory, Integrative and Comparative Physiology. 288:337-344
Seo, Y., Lee, K., Park, K., Bae, K. & Choi, I. 2006. A proteomic assessment of muscle contractile alterations during unloading and reloading. The Journal of Biochemistry. 139:71-80.
Smith, N. R. 1928. A note on the so-called “Disuse”atrophy of muscle. Journal of Anatomy. 62:238-240.
Storey, K. B. 2002. Life in the slow lane: molecular mechanisms of estivation. Comparative Biochemistry and Physiology Part A. 133:733-754.
Symonds, B. L., James, R. S. & Franklin, C. E. 2007. Getting the jump on skeletal muscle disuse atrophy: preservation of contractile performance in aestivating Cyclorana alboguttata (Günther 1867). The Journal of Experimental Biology. 210:825-835.
Tay, A. S. L., Chew, S. F. & Ip, Y. K. 2003. The swamp eel Monopterus albus reduces endogenous ammonia production and detoxifies ammonia to glutamine during 144h of aerial exposure. The Journal of Experimental Biology. 206:2473-2486.
Zhou, Q., Wu, C., Dong, B., Liu, F. & Xing, J. 2008. The encysted dormant embryo proteome of Artemia sinica. Marine Biotechnology. 10:438-446.
Zuiew, B. 1793. Biga Muraenarum, novae species. Nova Acta Acad. Petropol. 7:296-301.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔