(3.238.96.184) 您好!臺灣時間:2021/05/12 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張冠翔
研究生(外文):Kuan-hsiang Chang
論文名稱:斑鰭飛魚(Cyseluruspoecilopterus)骨骼肌之蛋白質體研究
論文名稱(外文):Study on the Proteomics of Flyingfish (Cyselurus poecilopterus) Skeletal Muscle
指導教授:莫顯蕎莫顯蕎引用關係
指導教授(外文):Hin-Kiu Mok
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:56
中文關鍵詞:斑鰭飛魚骨骼肌蛋白質體
外文關鍵詞:skeletal musclesproteomicsCyselurus poecilopterusflyingfish
相關次數:
  • 被引用被引用:1
  • 點閱點閱:404
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
飛魚受驚嚇時會迅速擺動尾鰭衝出水面,並張開特化的胸鰭作長距離的滑翔。此特化的胸鰭是靠著兩群肌肉控制伸展與收縮,這兩群的肌肉外觀均呈現淡紅色,但未經組織學的證實,且兩者生化特徵比較也尚無描述。本研究目的在於比較斑鰭飛魚胸鰭肌肉與軀幹白肌和紅肌在組織學和蛋白質體學上的差異,並試圖瞭解胸鰭肌肉與體側紅肌之差異,以及其功能。利用斑鰭飛魚作為實驗物種,我們發現,胸鰭肌肉肌纖維束面積介於白肌和紅肌之間,且具有較大面積的結締組織與些許的脂肪組織,所以飛魚的胸鰭肌肉可能不歸類為白肌或紅肌,並且胸鰭肌肉會行脂質代謝提供能量來維持鰭的伸展。利用蛋白質體學比較三種肌肉,其中肌肉收縮蛋白actin,myosin regulatory light chain,myosin light polypeptide,酵素蛋白isocitrate dehydrogenase,malate synthase,queuosine biosynthesis protein和兩個逆境蛋白 heat shock protein (HSP70 and HSP60) 的蛋白質含量在胸鰭肌肉高於白肌或紅肌。這些結果顯示飛魚的胸鰭肌肉可能兼行有氧和糖解的代謝功能,肌纖維型態應屬於中間型肌纖維的粉紅肌。
Flying fish has specialized pectoral fins. When they are activated, they will rush out of the water, expand their pectoral fins and flap their caudal fin to glide. The pectoral fins are controlled by two groups of muscles in which the external appearance is pink. No histological investigations have been made on their muscles to verify whether they are red muscles. The purposes of this study were to compare the pectoral fin muscle, trunk white muscle and trunk red muscle by histological and proteome methods so as to understand if the pectoral fin muscles is red muscles and to infer their function. Cyselurus poecilopteins was used for this study, Result show that the sizes for the cross section of the pectoral-fin-muscle-fibers were between the white and red muscles, and a large amount of connective tissue and fat tissues are present in the space among the muscle cells. It is interpreted the pectoral fin muscles of flying fish might not belong to white muscle and red muscle, and they probably utilize lipid metabolism to provide enough energy for the gliding activates. The proteomic pages for the three muscle types were compared and differences were found in the muscle proteins: actin, myosin regulatory light chain, myosin light polypeptide; enzymes: isocitrate dehydrogenase, malate synthase, queuosine biosynthesis protein;stress proteins: heat shock protein (HSP70 and HSP60). Expressions of these proteins were high in the pectoral-fin muscles than in the white and red muscles. These results suggest that the flying fish’ pectoral-fin muscles may involve in the oxidative and glycolysis pathways, and the muscle fibers type maybe belong to an intermediate type of muscle fiber.
總目錄
章次 頁次
謝辭……………………………………………………………………………………i
中文摘要………………………………………………………………………………ii
英文摘要……………………………………………………………………………...iii
總目錄…………………………………………………………………………………v
表目錄………………………………………………………………………………..vii
圖目錄……………………………………………………………………………….viii
一、前言………………………………………………………………………………1
1.1 斑鰭飛魚簡介………………………………………………………...………1
1.2 行為…………………………………………………………………………...1
1.3 形態學…………………………………………………………………...……2
1.4 白肌與紅肌………………………………………………………………...…2
1.5 蛋白質體學…………………………………………………………...………3
1.6 研究目標…………………………………………………………………...…4
二、材料與方法………………………………………………………………………6
2.1 實驗魚種………………………………………………………………...……6
2.2 樣品製備…………………………………………………………………...…6
2.3 組織切片………………………………………………………………...……6
2.4 組織切片分析……………………………………………………………...…7
2.5 蛋白質純化……………………………………………………………...……7
2.6 蛋白質定量……………………………………………………………...……7
2.7二維電泳法 (two-dimensional gel electrophoresis) ……………………….…8
2.7.1 第一維 等電膠集電泳 Isoelectric focusing electrophresis (IEF) …….8
2.7.2 平衡 Equilibration…………………………………...…………………9
2.7.3 第二維 聚丙醯胺膠體電泳 SDS-PAGE…………………….........…10
2.7.4 Coomassie blue G-250染色…………………………………...……….11
2.8 Gel image analysis………………………………………………………...…12
2.9 In gel digestion…………………………………………………………….…12
2.10 MALDI-TOF操作……………………………………………………….…12
2.11 MSCOT辨認未知蛋白……………………………………………………..13
三、結果…………………………………………………………………....…………14
3.1 胸鰭肌肉織型態………………………………………………………….…14
3.2 肌肉組織的差異………………………………………………………….…14
3.3 肌肉間蛋白質的表現………………………………………………….……15
四、討論………………………………………………………………………………17
4.1 肌肉組織差異性分析………………………………………………….……17
4.2 蛋白質差異性分析……………………………………………………….…17
五、結論……………………………………………………………………....………22
六、參考文獻…………………………………………………………………………23
表……………………………………………………………………………………..28
圖……………………………………………………………………………………..34
個人履歷……………………………………………………………………………..45
Barnard, R. J., Edgerton, V. R., Furukawa, T. and Peter, J. B. 1971. Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am J Physiol. 220:410-414.

Biewener, A. A. and Gillis, G. B. 1999. Dynamics of muscle function during locomotion: accommodating variable conditions. J Exp Biol. 202: 3387–3396.

Burton, R. F. 1978. Intracellular buffering. Respir Physiol. 33:51-58.

Cooper, C. E., Vollaard, N. B. J., Choueiri, T., and Wilson, M. T. 2002. Exercise, free radicals and oxidative stress. Biochem Soc Trans. 30:280-285.

Davenport, J. 1994. How and why do flying fish fly? Rev. Fish Biol Fisheries 4:184–214.

Dong, Y. and Dong, S. Meng, X. 2008. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture. 276:179-186.

Edgerton, H. E. and Breder, C. M. jun. 1941. High sped photographs of flying fishs in flight. Zoologica (NY). 26, 311-13.

Longhurst, A. R. and Pauly, D. 1987. Ecology of Tropical Oceans. London: Academic Press.

Gleeson, P. A., and Schachter, H. 1983. Control of glycoprotein synthesis. J Biol Chem. 258: 6162-6173.

Gorelova, T. A. 1980. The feeding of young flyingfishes of the Exocoetidae and of the smallwing flyingfish, Oxyporhamphus micropterus of the family Hemiramphidae. J Ichthyol. 20:60-71.

Hertel, H. 1966. Structure-Form-Movement. New York: Reinhold. 251 pp.

Hill, G. R., Teshima, T., Rebel, V. I., Krijanovski, O. I., Cooke, K. R., Brinson, Y. S. and Ferrara, J. L. M. 2000. The p55 TNF- Receptor Plays a Critical Role in T Cell Alloreactivity. J Immunol. 164: 656-663.

Hirayama, K., Glytsis, E. N., and Gaylord, T. K. 1997. Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings. JOSA A. 14:907-917.

Hirayama, H., Tanaka, S., Ramvall, P. and Aoyagi, Y. 1998. Intense photoluminescence from self-assembling InGaN quantum dots artificially fabricated on AlGaN surfaces. Appl Phys. 72:10.1063/1.121168.

Jennifer A. J., Cristina L. W., and Ron R. K. 1998. Aggresomes: A Cellular Response to Misfolded Proteins. J Cell Biol. 143:1883-1898.

Johnston, I. A. 1982. Biochemistry of myosin and contractile properties of fish keletal muscle. Mol Physiol. 2:15-29.

Johnston, I. A. and Tota, B. 1974. Myofibrillar ATPase in the various red and white trunk muscles of the tunny (Thunnus thynnus L.) and the tub gurnard (Trigla lucerna L.). Comp Biochem Physiol B. 49(2):367-73.

Johnson, T. P. and Johnston, I. A. 1991. Power output of fish muscle fibres performing oscillatory work: effects of acute and seasonal temperature change. J Exp Biol. 157: 409–423.

Jose, G. A., Jose, A. L., and Nielsen, B. 1998. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J Physiol. 513:895-905.

Kansci, G., Genot, C., Meynier, A. and Gandemer, G. 1997. The antioxidant activity of carnosine and its consequwnces on the volatile profiles of liposomes during iron/ascorbate induced phospholipid oxidation. Food Chem. 60:165-175.

Khatchaturov, V. C. 1983. The digestive system of the flying fishes (Exocoetidae, Beloniformes). J Ichthyol. 23:106-113.

Kim, N. K., Joh, J. H., Park, H.R., Kim, O. H., Park, B. Y. and Lee, C. S. 2004 Differential expression profiling of the proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics. 4: 3422–3428.

Kiessling, A., Storebakken, T., Asgard, T. and Kiessling, K. H. 1991. Changs in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age---I.Growth dynamics. Aquaculture 93:335-356.

Knowlton, A. A., in: Norwell, M. A. (Ed.). 1977. Heart shock proteins and the cardiovascular system. Kluwer Academic Publishers. pp. 1–227.

Krebs, R. A. and Feder, M. E. 1998. Hsp70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much? J Insect Physiol. 44:1091-1101.

Lefevre, F., Fauconneau, B., Ouali, A. and Culioli, J. 2002. Thermal gelation of brown trout myofibrils from white and red muscles: effect of pH and ionic Strength. J Sci Food Agric. 55:4761-4770.

Lefevre, F., Fauconneau, B., Thompson, J. W. AND Gill, T. A. 2007. Thermal Denaturation and Aggregation Properties of Atlantic Salmon Myofibrils and Myosin from White and Red Muscles. J Agric Food Chem. 55:4761-4770.

Lindguist, S. 1986. The heat chock response. Ann Ray Biochem. 55:1151-1191.

Lowey, S. 1994. The structure of vertebrate muscle myosin. In Myology. A.G. Engel and C. Franzini-Armstrong, editors. McGraw-Hill Book Co., New York. 485-505.

Mizunoya, W., Wakamatsu, J. I., Tatsumi, R. and Ikeuchi, Y. 2008. Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system. Anal Biochem. 377:111–113.

Mobius, K. 1878. Die bewegungen der fliegenden fische durch die luft. Z wiss Zool. (Suppl.) 30: e343-82. (in German).

Morita, T. 2000. Amino acid sequences of a-skeletal muscle actin isoforms in two species of rattail fish, Coryphaenoides acrolepis and Coryphaenoides cinereus. Fish. Sci. 66:1150.

Ochiai, M. and Ashida, M. 1988. Purification of a beta-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori. J Biol Chem. 263:12056-12062.

Okumura, N. 2005. Proteomic analysis of slow- and fast-twitch skeletal. Proteomics 5:2896–2906.

Parmentier, E., Gennotte, V. Focant, B. Goffinet, G. and Vandewalle, P. 2003. Characterization of the primary sonic muscles in Carapus acus (Carapidae): a multidisciplinary approach. Proc. R. Soc. Lond. 270:2301-2308.

Parsell, D. A. and Lindquist, S. 1993. The Function of Heat-Shock Proteins in Stress Tolerance: Degradation and Reactivation of Damaged Proteins. Annu Rev Genet. 27:437-496.

Periasamy, M., Strehler, E. E., Garfinkel, L. I., Gubits, R. M., Ruiz-Opazo, N. and Nadal- Ginard, B. 1984. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem. 259:13595-13604.

Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A. and Stempel, K. E. 1972. Metabolic Profiles of Three Fiber Types of Skeletal Muscle in Guinea Pigs and Rabbitst. Biochemistry. 11: 2627–2634.

Rome, L. C., Swank, D. and Corda, D. 1993. How fish power swimming. Science. 261: 340–343.

Rowlerson, A. and Scapolo, P. A., Mascarello, F., Carpenè, E. and Veggetti, A. 2004. Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J Muscle Res Cell Motil. 6:1573-2657.

Schiaffino, S. and Reggiani, C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 76:371–423.

Schiavone, R., Zilli, L., Storelli, C. and Vilella, S., 2008. Identification by proteome analysis of muscle proteins in sea bream (Sparus aurata). Eur Food Res Technol. 227:1403–1410.

Stickland, N. C. 1983. Growth and development of muscle fibers in the rainbow trout (Salmo gairdneri). J Anat. 137:323-333.

Stevenson, R. D. and Josephson, R. K. 1990. Effects of operating frequency and temperature on mechanical power output from moth flight muscles. J Exp Biol. 149: 61–78.

Syme, D.A. and Shadwick, R. E. 2001. Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from skipjack tuna (Katsuwonus pelamis). J Exp Biol. 205:189–200.

Takekura, H. and Yoshioka, T. 1987. Determination of metabolic profiles on single muscle fibres of different types. J Muscle Res Cell Motil. 8:342-348.

Tatarczuch, L. and Kilarski, W. 1982. Histochemical analysis of muscle fibers in myotome of teleost fishes (Carassius auratus gibelio). Folia Histochem Cytochem (Krakow). 20(3-4):163-70.

Venkatesh, V. and Davis, F. D. 1996. A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decision Sciences. 27:451-481.

Weeds AG, Lowey S. 1971. Substructure of the myosin molecule. II. The light chains of myosin. J Mol Biol. 61:701-25.

Westneat, M. W. Thorsen, D. H. Walker, J. A. Hale, M. E. 2004. Structure, function, and neural control of pectoral fins in fishes. IEEE-JOE. 29:674-683.

Ziv, T. 2008. Comparative proteomics of the developing fish (zebrafish and gilthead seabream) oocytes. Comp Biochem Phys. 3D:12-35.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔