1.唐宏結、黃材成(2007)「孤立波碎波特性之數值研究」,第29屆海洋工程研討會論文集,第229-234頁。
2.莊修銘(2004) 「繫留雙浮胴浮體之運動與消波特性試驗研究」,國立海洋大學河海工程學系碩士論文。3.陳韋銘(2008)「錨碇雙浮筒動力分析之研究」,國立中山大學海洋環境及工程學系碩士論文。
4.陳韋銘、唐宏結、黃材成(2007)「應用非線性數值水槽研究不規則波與固定浮體之交互作用」,第29屆海洋工程研討會論文集,第643-648頁。
5.Beck, R.F., 1994. Time domain computations for floating bodies. Applied Ocean Research 16, 267-282.
6.Boo, S.Y., 2002. Linear and nonlinear irregular waves and forces in a numerical wave tank. Ocean Engineering 29, 475-493.
7.Brebbia, C.A., Walker, S., 1979. Dynamic Analysis of Offshore Structures. Newnes-Butterworths, London.
8.Brebbia, C.A., Dominguez, J., 1989. Boundary Elements: An Introductory Course. McGraw-Hill, New York.
9.Brorsen, M., Larsen, J., 1987. Source generation of nonlinear gravity waves with the boundary integral equation method. Coastal Engineering 11, 93-113.
10.Celebi, M.S., 2000. Computation of transient nonlinear ship waves using an adaptive algorithm. J. Fluids and Structures 14, 281-301.
11.Celebi, M.S., 2001. Nonlinear transient wave-body interactions in steady uniform currents. Computer Methods in Applied Mechanics and Engineering 190, 5149-5172.
12.Chopra, A.K., 2001. Dynamics of Structures: Theory and Application to Earthquake Engineering. Prentice-Hall, Inc., Upper Saddle River.
13.Cointe, R., 1990. Numerical simulation of a wave channel. Engineering Analysis with Boundary Elements 7(4), 167-177.
14.Contento, G., 2000. Numerical wave tank computations of nonlinear motions of two-dimensional arbitrarily shaped free floating bodies. Ocean Engineering 27, 531-556.
15.Dean, R.G., 1965. Stream function representation of nonlinear ocean wave. J. Geophysical Research 70(18), 4561-4572.
16.Dean , R.G., Dalrymple, R.A., 1984. Water Wave Mechanics for Engineers and Scientists. Prentice-Hall, Inc. New Jersey. pp. 303-305.
17.Ferrant, P., 1998. Runup on a cylinder due to waves and current: Potential flow solution with fully nonlinear boundary conditions. Proc. 8th International Offshore and Polar Engineering Conference, Vol. 3, pp. 332-339.
18.Goda, Y., 1998. Perturbation analysis of nonlinear wave interactions in relatively shallow water. Proc. 3rd International Conference on Hydrodynamics, pp. 33-51.
19.Goda, Y., 1999. A comparative review on the functional forms of directional wave spectrum. Coastal Engineering Journal 41(1), 1-20.
20.Goda, Y., Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments. Proc. 15th International Conference Coastal Engineering, pp. 628-650.
21.Grilli, S.T., Svendsen, I.A., 1990. Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Engineering Analysis with Boundary Elements 7(4), 178-195.
22.Grilli, S.T., Subramanya, R., 1996. Numerical modeling of wave breaking induced by fixed or moving Boundaries. Computational Mechanics 17(6), 374-391
23.Hsu, T.W., Hsiao, S.C., Ou, S.H., Wang, S.K., Yang, B.D., Chou, S.E., 2007. An application of Boussinesq equations to Bragg reflection of irregular waves. Ocean Engineering 34, 870-883.
24.Huang, C.C., Tang, H.J., Liu, J.Y., 2006. Dynamical analysis of net cage structures for marine aquaculture: Numerical simulation and model testing. Aquacultural Engineering, 35, 258-270.
25.Huang, C.C., Tang, H.J., Liu, J.Y., 2007a. Modeling volume deformation in gravity-type cages with distributed bottom weights or a rigid tube-sinker. Aquacultural Engineering, 37, 144-157.
26.Huang, C.C., Tang, H.J., Wang, C.T., 2007b. A fully nonlinear wave-current numerical wave tank based on BEM. Proc. 17th International Offshore and Polar Engineering Conference, pp. 2100-2106.
27.Huang, C.C., Tang, H.J., Chen, W.M., 2008a. On the interaction between random waves and a freely floating body in a fully nonlinear numerical wave tank. Proc. 18th International Offshore and Polar Engineering Conference 3, 148-155.
28.Huang, C.C., Tang, H.J., Liu, J.Y., 2008b. Effects of waves and currents on gravity-type cages in the open sea. Aquacultural Engineering 38, 105-116.
29.IMSL FORTRAN Library User’s Guide 5.0: Math/Library Volume 1 of 2. Visual Numerics, inc.
30.Isaacson, M., 1982. Nonlinear-wave effects on fixed and floating bodies. J. Fluid Mechanics 120, 267-281.
31.Kim, M.H., Celebi, M.S., Kim, D.J., 1998. Fully nonlinear interactions of waves with a three-dimensional body in uniform currents. Applied Ocean Research 20, 309-321.
32. Kim, C.H., Clément, A.H., Tanizawa, K., 1999. Recent research and development of numerical wave tank - A review. Int. J. Offshore and Polar Eng., 9(4), 241-256.
33. Koo, W.C., Kim, M.H., 2004. Freely floating-body simulation by a 2D fully nonlinear numerical wave tank. Ocean Engineering 31, 2011-2046.
34. Koo, W.C., Kim, M.H., 2006. Numerical simulation of nonlinear wave and force generated by a wedge-shape wave maker. Ocean Engineering 33, 983-1006.
35. Koo, W.C., Kim, M.H., 2007a. Current effects on nonlinear wave-body interactions by a 2D fully nonlinear numerical wave tank. J. Waterway, Port, Coastal and Ocean Engineering 133(2), 136-146.
36. Koo, W.C., Kim, M.H., 2007b. Fully nonlinear wave-body interactions with surface-piercing bodies. Ocean Engineering 34, 1000-1012.
37. Lee, C.P., 1994. Dragged surge motion of a tension leg structure. Ocean Engineering 21(3), 311-328.
38. Lee, H.H., Wang, P.W., Lee, C.P., 1997. Dragged surge motion of tension leg platforms and strained elastic tethers. Ocean Engineering 26, 575-594.
39. Lee, H.H., Wang, W.S., 2005. The dragged surged motion of tension-leg type fish cage system subjected to multi-interactions among wave and structures. IEEE J. Oceanic Engineering 30(1), 59-78.
40. Loland, G., 1991 Current Force on and Flow through Fish Farms. Division of Marine Hydrodynamics, The Norwegian Institute of Technology, 86-95.
41. Longuet-Higgins, M.S., Cokelet, E., 1976. The deformation of steep surface waves on water I. A numerical method of computation. Proc. Royal Society, London, Series A350, 1-26.
42. Longuet-Higgins, M.S., 1977. The mean forces exerted by waves on floating or submerged bodies with applications to sand bars and wave power machines. Proc. Royal Society, London, Series A352, 463-480.
43. Mansard, E.P.D., Funke, E.R., 1980. The measurement of incident and reflected spectra using a least squares method. Proc. 17th Costal Engineering Conference, ASCE, 154-172.
44. Maruo, H., 1960. On the increase of the resistance of a ship in rough seas. J. Zosen Kiokai 108.
45. Medina, D.E., 1989. Advanced Applications of the Boundary Element Method to Groundwater Flow in Fractured Rock and Free Surface Hydrodynamics, Ph.D. Dissertation, University of Cornell.
46. Nojiri, N., Murayama, K., 1975. A study on the drift force on two-dimensional floating body in regular waves. Transactions of the West-Japan Society Naval Architect 51, 131-152.
47. Ohyama, T., Nadaoka, K., 1991. Development of a numerical wave tank for analysis of nonlinear and irregular wave field. Fluid Dynamics Research 8, 231-251.
48. Ohyama, T., Hsu, J.R.C., 1996 Nonlinear wave effect on the slow drift motion of a floating body. Applied Ocean Research 17, 349-362.
49. Orlanski, I., 1976. A simple boundary condition for unbounded hyperbolic flows. J. Compt. Phys. 21, 251-269.
50. Pierson, W.J., 1993. A third order oscillatory perturbation expansion for sums of interacting long crested Stokes waves. Journal of Ship Research 37(4), 345–383.
51. Rienecker, M.M., Fenton, J.D., 1981. A Fourier approximation method for steady water waves. J. Fluid Mechanics 104, 119-137.
52. Ryu, S., Kim, M.H., Lynett, P.J., 2003. Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical tank. Computational Mechanics 32, 336-346.
53. Sarpkaya, T., Isaacson, M., 1981. Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinhold, New York, pp. 454-455.
54. Sen, D., Pawlowski, J.S., Lever, J., Hinchey, M.J., 1990. Two-dimensional numerical modeling of large motions of floating bodies in waves. Proc. 5th Int. Conf. on Num. hip Hydro., 351-373.
55. Sen, D., 1993. Numerical simulation of motions of two-dimensional floating bodies. J. Ship Res. 37(4), 307-330.
56. Tanizawa, K., 1995. A nonlinear simulation method of 3-D body motions in waves (1st Report). Journal of the Society of Naval Architect Japan 178, 179-191.
57. Tanizawa, K., 1996. Long time fully nonlinear simulation of floating body motions with artificial damping zone. Journal of the Society of Naval Architects of Japan 180, 311-319.
58. Tanizawa, K., 2000 The state of the art on numerical wave tank. Proc. 4th Osaka Colloquium on Seakeeping Performance of Ships 2000, pp.95-114.
59. Tanizawa, K., Minami, M., 1998. On the accuracy of NWT for radiation and diffraction problem. Abstract for the 6th Symposium on Nonlinear and Free-surface Flow.
60. Tanizawa, K. Naito, S., 1997. A study on parametric roll motions by fully nonlinear numerical wave tank. Proc. 7th International Offshore and Polar Engineering Conference, Vol 3, pp. 69-75.
61. Vinje, T, Brevig, P., 1981. Nonlinear ship motions. Proc. 3rd Int. Conf. on Num. Ship Hydro., pp. IV3-1-IV3-10.
62. Weng, W.K., Chou, C.R., 2007. Analysis of response of floating dual pontoon structure. China Ocean Engineering 20(1), 91-104.
63. Williams, A.N., Abul-Azm, A.G., 1997. Dual pontoon floating breakwater. Ocean Engineering 24(5), 465-478.
64. Williams, A.N., Lee, H.S., Huang, Z., 2000 Floating pontoon breakwaters, Ocean Engineering 27, 221-240.
65. Wilson, J.F., 2003. Dynamics of Offshore Structures. John Wiley & Sons, Inc., Hoboken, New Jersey.
66. Wu, G.X., Eatock Taylor, R., 1996. Transient motion of a floating body in steepwater waves, Proc. 11th International Workshop on Water Waves and Floating Bodies, Hamburg, Germany.
67. Yamamoto, T., 1981. Moored floating breakwater response to regular and irregular waves. Applied Ocean Research 3(1), 27-36.
68. Yamamoto, T., Yoshida, A., Ijima, T., 1980. Dynamics of elastically moored floating objects. Applied Ocean Research 2(2), 85-92.
69. Yang, C., Liu, Y.Z., 1990. Time-domain calculation of the nonlinear hydrodynamics of wave-body interaction. Proc. Fifth International Conference on Numerical Ship Hydrodynamics, 341-350.
70. Zhao, Y.P., Li, Y.C., Dong, G.H., Gui, F.K., 2007a. Numerical simulation of the hydrodynamic behavior of gravity cage in waves. China Ocean Engineering 21 (2), 225-238.
71. Zhao, Y.P., Li, Y.C., Dong, G.H., Gui, F.K., Teng, B., 2007b. Numerical simulation of the effects of structure size ratio and mesh type on three-dimensional deformation of fishing-net gravity cage in current. Aquacultural Engineering 36, 285-301.
72. Zhao, Y.P., Li, Y.C., Dong, G.H., Gui, F.K., Teng, B., 2007c. A numerical study on dynamic properties of the gravity cage in combined wave-current flow. Ocean Engineering 34, 2350-2363.