(3.238.96.184) 您好!臺灣時間:2021/05/18 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾皇凱
研究生(外文):Huang-kai Tseng
論文名稱:多環芳香烴化合物與腐植質結合係數之研究
論文名稱(外文):The study of the binding constant between polycyclic aromatic hydrocarbons and humic substances
指導教授:李宗霖李宗霖引用關係
指導教授(外文):Chon-Lin Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:129
中文關鍵詞:結合係數多環芳香烴化合物腐植質
外文關鍵詞:binding constantPAHshumic substances
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多環芳香烴碳氫化合物(polycyclic aromatic hydrocarbons ; 簡稱PAHs)為高毒性且高生物累積性的疏水性有機污染物,且在環境中不易分解,因此瞭解其在水環境中的宿命與傳輸機制,便是一項重要的課題。PAHs在水環境中易與溶解性有機物(如腐植質)結合,常以兩者之結合係數(KDOC)來描述,而影響KDOC的因子亦在學界廣泛討論,諸如水中的pH、離子強度等。
過去的研究,多針對於單一PAH存在時進行探討,但於水環境中並非如此單純,因此在多種PAHs共存對於其與溶解性有機物的結合反應是否存在競爭作用值得深入研究,本研究中探討兩種PAHs (phenanthrene及pyrene)同時存在時,PAHs間與腐植質LHA (Leonardite Humic Acid)結合上的競爭效應,結果發現兩種PAHs同時存在時,所得到的KDOC與僅單一PAH存在時實驗本身之標準差過大,而無法判斷是否為PAHs競爭之結果。
另一方面,腐植質因著不同來源,可能在物理化學特性上有所差異,當然也可能造成其與PAH的結合力有所不同,本研究針對影響兩者的結合係數的因素進行一系列探討,結果發現腐植質之(N+O)/C、total acidity、 carboxylic、脂肪族含量及Iα ’/Iα 對於其與PAH間之結合係數(KDOC)不具顯著的相關性;但腐植質之O/C、E4/E6、phenolic group便跟其與PAH間之結合係數(KDOC)具有顯著之負相關,另外,芳香族含量及 ε280與PAH間的結合係數具有顯著正相關,因此,影響腐植質與PAHs此類化合物的結合力,腐植質之芳香族特性為較重要的因子。
Polycyclic aromatic hydrocarbons (PAHs) are in general characterized by high toxicity, persistance, and bio-accumulation in environment. It is important to understand the transport and fate of PAHs in environment. In aquatic environment, PAHs are easily bound with dissolved organic matter (DOM), such as humic substance, and KDOC is usually used in denoting the binding constant.
Previously, many investigations focused on the binding of a single PAH to DOM. However, few researches considered the competition effect on the binding of multiple PAHs to DOM. This study therefore explored the competition between the binary PAHs, pyrene and phenanthrene, in binding with humic substances. No significant competition effect in KDOC could be observed between these two compounds with LHA (Leonardite Humic Acid) because of the relatively large variation in KDOC determination.
Humic substances from different sources might have different properties. Several characteristic indicators of humic substances were used to interprete the variations of KDOC of pyrene and phenanthrene, such as elemental ratio, total acidity, functional group content, etc. Negative correlations of O/C and phenolic group content to the KDOC of pyrene and phenanthrene were observed (p<0.05). In contrast, positive correlation of aromaticity and ε280 of humic substance to the KDOC of pyrene and phenanthrene were observed (p<0.05). Therefore, the contents of phenolic and aromatic groups of humic substance are essential factors in determining their binding constants with PAHs.
目錄
第一章 前言 1
第二章 文獻回顧 3
2-1 溶解性有機物 3
2-2 腐植質 4
2-3 疏水性有機污染物 7
2-4 多環芳香烴碳氫化合物 8
2-5 水環境因子對HOPS吸附行為之影響 11
2-6 溶解性有機物特性對PAHS吸附行為的影響 12
第三章 實驗材料與方法 15
3-1 實驗材料 15
3-2 實驗方法 18
3-2-1 實驗方法的選用 18
3-2-2 實驗原理 20
3-3 量測方式 21
3-4 實驗步驟 22
第四章 結果與討論 24
4-1單一多環芳香烴與LHA之KDOC結果 24
4-2 多環芳香烴間的競爭效應 26
4-3 腐植酸種類對KDOC的影響 28
4-4 腐植質極性元素對KDOC之影響 30
4-5 腐植質官能基特性對KDOC值之影響 34
4-5-1 酸性官能基的影響 34
4-5-2 脂肪族與芳香族含量的影響 38
4-6 腐植質螢光特性與KDOC之相關性 41
4-7 腐植質紫外光及可見光光譜特性與KDOC之相關性 51
第五章 結論與建議 55
5-1 結論 55
5-2 建議 56
參考文獻

Belin, C., Quellec, C., Lamotte, M., Ewald, M., Simon, P., 1993. Characterization by fluorescence of the dissolved organic matter in natural water. Application to fractions obtained by tangential ultrafiltration and XAD resin isolation. Environ. Technol. 14, 1131-1144.
Brunk, B.K., Jirka, G.H., Lion, L.W., 1997. Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping in estuaries. Environmental Science & Technology 31, 119-125.
Carter, C.W., Suffet, I.H., 1982. Binding of DDT to dissolved humic materials. Environmental Science & Technology 16, 735-740.
Chefetz, B., Deshmukh, A.P., Hatcher, P.G., Guthrie, E.A., 2000. Pyrene sorption by natural organic matter. Environmental Science & Technology 34, 2925-2930.
Chen, Y., Senesi, N., Schnitzer, M., 1977. Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal 41, 352-358.
Chin, Y.P., Aiken, G., Oloughlin, E., 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science & Technology 28, 1853-1858.
Chin, Y.P., Aiken, G.R., Danielsen, K.M., 1997. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environmental Science & Technology 31, 1630-1635.
Chiou, C.T., 1985. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environmental Science & Technology 19, 57-62.
Chiou, C.T., Kile, D.E., Brinton, T.I., Malcolm, R.L., Leenheer, J.A., Maccarthy, P., 1987. A Comparison of water wolubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environmental Science & Technology 21, 1231-1234.
Chiou, C.T., Malcolm, R.L., Brinton, T.I., Kile, D.E., 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic-acids. Environmental Science & Technology 20, 502-508.
Chiou, C.T., Schmedding, D.W., Manes, M., 1982. Partitioning of organic compounds in octanol-water systems. Environmental Science & Technology 16, 4-10.
Coble, P.G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Marine Chemistry 51, 325-346.
Cory, R.M., McKnight, D.M., 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology 39, 8142-8149.
DePaolis, F., Kukkonen, J., 1997. Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34, 1693-1704.
Dzombak, D.A., Luthy, R.G., 1984. Estimating adsorption of polycyclic aromatic hydrocarbons on soils. Soil Science 137, 292-308.
Futoma, D.J., Smith, S.R., Smith, T.E., Tanaka, J., 1981
The analysis of polycyclic aromatic hydrocarbons in water system. CRC Press, Florida.
Gauthier, T.D., Seitz, W.R., Grant, C.L., 1987. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environmental Science & Technology 21, 243-248.
Gauthier, T.D., Shane, E.C., Guerin, W.F., Seitz, W.R., Grant, C.L., 1986. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environmental Science & Technology 20, 1162-1166.
Grathwohl, P., 1990. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: implications on Koc correlations. Environmental Science & Technology 24, 1687-1693.
Gunasekara, A.S., Xing, B.S., 2003. Sorption and desorption of naphthalene by soil organic matter: Importance of aromatic and aliphatic components. Journal of Environmental Quality 32, 240-246.
Haitzer, M., Hoss, S., Traunspurger, W., Steinberg, C., 1998. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms - A review. Chemosphere 37, 1335-1362.
Jiang, F.H., Lee, F.S.C., Wang, X.R., Dai, D.J., 2008. The application of Excitation/Emission Matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China. Marine Chemistry 110, 109-119.
Jonker, M.T.O., Koelmans, A.A., 2001. Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environmental Science & Technology 35, 3742-3748.
Khalaf, M., Kohl, S.D., Klumpp, E., Rice, J.A., Tombacz, E., 2003. Comparison of sorption domains in molecular weight fractions of a soil humic acid using solid-state F-19 NMR. Environmental Science & Technology 37, 2855-2860.
Kulikova, N.A., Perminova, I.V., 2002. Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environmental Science & Technology 36, 3720-3724.
Landrum, P.F., Nihart, S.R., Eadie, B.J., Gardner, W.S., 1984. Reverse-phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters. Environmental Science & Technology 18, 187-192.
Laor, Y., Rebhun, M., 1997. Complexation-flocculation: A new method to determine binding coefficients of organic contaminants to dissolved humic substances. Environmental Science & Technology 31, 3558-3564.
Lee, C.L., Kuo, L.J., Wang, H.L., Hsieh, P.C., 2003. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model. Water Research 37, 4250-4258.
Lu, Y.F., Pignatello, J.J., 2002. Demonstration of the "Conditioning effect" in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environmental Science & Technology 36, 4553-4561.
Magee, B.R., Lion, L.W., Lemley, A.T., 1991. Transport of dissolved organic macromolecules and Their effect on the. transport of Phenanthrene in Porous media Environmental Science & Technology 25, 323-331.
Malcolm, R.L., 1989. Spectroscopic Approaches. In: M.H.B. Hayes, P. MacCarthy, R.L. Malcolm and R.S. Swift, Editors, Humic Substances II. In search of structure. John Wiley & Sons, Chichester (1989), 303–324.
McCarthy, J.F., Jimenez, B.D., 1985. Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation. Environmental Science & Technology 19, 1072-1076.
Means, J.C., 1995. Influence of salinity upon sediment–water partitioning of aromatic hydrocarbons. Marine Chemistry 51, 3-16.
Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., Mackay, D., 1985. Relationship between octanol-water partition coefficient and aqueous solubility Environmental Science & Technology 19, 522-529.
Morra, M.J., Corapcioglu, M.O., Vonwandruszka, R.M.A., Marshall, D.B., Topper, K., 1990. Fluorescence quenching and polarization studies of Naphthalene and 1-Naphthol interaction with humic acid. Soil Science Society of America Journal 54, 1283-1289.
Murphy, E.M., Zachara, J.M., Smith, S.C., Phillips, J.L., Wietsma, T.W., 1994. Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environmental Science & Technology 28, 1291-1299.
Nielsen, T., Helweg, C., Siigur, K., Kirso, U., 1997. Application of HPLC capacity coefficients to characterize the sorption of polycyclic aromatic compounds to humic acid. Talanta 44, 1873-1881.
Parlanti, E., Morin, B., Vacher, L., 2002. Combined 3D-spectrofluorometry, high performance liquid chromatography and capillary electrophoresis for the characterization of dissolved organic matter in natural waters. Organic geochemistry 33, 221-236.
Parlanti, E., Worz, K., Geoffroy, L., Lamotte, M., 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic geochemistry 31, 1765-1781.
Peuravuori, J., 2001a. Binding of pyrene on lake aquatic humic matter: the role of structural descriptors. Analytica Chimica Acta 429, 75-89.
Peuravuori, J., 2001b. Partition coefficients of pyrene to lake aquatic humic matter determined by fluorescence quenching and solubility enhancement. Analytica Chimica Acta 429, 65-73.
Ravacha, C., Rebhun, M., 1992. Binding of organic solutes to dissolved humic substances and Its effects on adsorption and transport in the aquatic environment. Water Research 26, 1645-1654.
Rebhun, M., DeSmedt, F., Rwetabula, J., 1996. Dissolved humic substances for remediation of sites contaminated by organic pollutants. Binding-desorption model predictions. Water Research 30, 2027-2038.
Rutherford, D.W., Chiou, C.T., Kile, D.E., 1992. Influence of soil organic matter composition on the partition of organic compounds. Environmental Science & Technology 26, 336-340.
Salloum, M.J., Chefetz, B., Hatcher, P.G., 2002. Phenanthrene sorption by aliphatic-rich natural organic matter. Environmental Science & Technology 36, 1953-1958.
Schlautman, M.A., Morgan, J.J., 1993. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environmental Science & Technology 27, 961-969.
Schnitzer, M., Khan, S.U., 1972. Humic substances in the environment. marcel dekker, New York.
Sierra, M.M.D., Donard, O.F.X., Lamotte, M., Belin, C., Ewald, M., 1994. Fluorescence spectroscopy of coastal and marine waters. Marine Chemistry 47, 127-144.
Sierra, M.M.D., Giovanela, M., Parlanti, E., Soriano-Sierra, E.J., 2005. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 58, 715-733.
Sierra, M.M.D., Giovanela, M., Soriano-Sierra, E.J., 2000. Fluorescence properties of well-characterized sedimentary estuarine humic compounds and surrounding pore waters. Environ. Technol. 21, 979-988.
Stevenson, F.J., 1994. Humus Chemistry: genesis, composition, reactions, . John Wiley & Sons, New York.
Sun, W.L., Ni, J.R., Xu, N., Sun, L.Y., 2007. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere 66, 700-707.
Tanaka, F., Fukushima, M., Kikuchi, A., Yabuta, H., Ichikawa, H., Tatsumi, K., 2005. Influence of chemical characteristics of humic substances on the partition coefficient of a chlorinated dioxin. Chemosphere 58, 1319-1326.
Tanaka, S., Oba, K., Fukushima, M., Nakayasu, K., Hasebe, K., 1997. Water solubility enhancement of pyrene in the presence of humic substances. Analytica Chimica Acta 337, 351-357.
Tiller, C.L., Jones, K.D., 1997. Effects of dissolved oxygen and light exposure on determination of K-OC values for PAHs using fluorescence quenching. Environmental Science & Technology 31, 424-429.
Traina, S.J., Spontak, D.A., Logan, T.J., 1989. Effects of cations on complexation of Naphthalene by water-soluble organic-carbon. Journal of Environmental Quality 18, 221-227.
van den Heuvel, H., van Noort, P.C.M., 2003. Competition for adsorption between added phenanthrene and in situ PAHs in two sediments. Chemosphere 53, 1097-1103.
Voice, T.C., Rice, C.P., Weber, W.J., 1983. Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environmental Science & Technology 17, 513-518.
Weber, W.J., Leboeuf, E.J., Young, T.M., Huang, W.L., 2001. Contaminant interactions with geosorbent organic matter: Insights drawn from polymer sciences. Water Research 35, 853-868.
Wershaw, R.L., 1986. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. Journal of Contaminant Hydrology 1, 29-45.
Wershaw, R.L., 1989. Application of a membrane model to the sorptive interactions of humic substances. Environ Health Perspect 83, 191-203.
Wershaw, R.L., 1993. Model for humus in soils and sediments. Environmental Science & Technology 27, 814-816.
White, J.C., Pignatello, J.J., 1999. Influence of bisolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil. Environmental Science & Technology 33, 4292-4298.
Xia, G.S., Ball, W.P., 1999. Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent. Environmental Science & Technology 33, 262-269.
Xing, B.S., 1997. The effect of the quality of soil organic matter on sorption of naphthalene. Chemosphere 35, 633-642.
Xing, B.S., McGill, W.B., Dudas, M.J., 1994. Cross-correlation of polarity curves to predict partition-coefficients of nonionic organic contaminants. Environmental Science & Technology 28, 1929-1933.
Yamamoto, H., Liljestrand, H.M., Shimizu, Y., Morita, M., 2003. Effects of physical-chemical characteristics on the sorption of selected endocrine disrnptors by dissolved organic matter surrogates. Environmental Science & Technology 37, 2646-2657.
Zhou, J.L., Rowland, S., Mantoura, R.F.C., Braven, J., 1994. The formation of humic coatings on mineral particles under simulated estuarine conditions - a mechanistic study. Water Research 28, 571-579.
Zhou, J.L., Rowland, S.J., 1997. Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters. Water Research 31, 1708-1718.

王詩銘 (2004),南海北部有機碳化學之生地化研究,國立中山大學海洋地質及化學研究所碩士論文。

徐士涵 (2006),水環境因子對含氮多環芳香烴化合物與膠體性有機物結合係數之影響-pH值與離子強度,國立中山大學海洋環境及工程所碩士論文。

陳鎮東 (1994),海洋化學,國立編譯館,台北市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊